タグ別アーカイブ: クーロンの法則

電磁気学の論理性❓

物理学の基礎分野に電気磁気学がある。

最近科学論に疑念が膨らんで遣り切れない。

みんな自分の心に生じるものだから、自己責任という事かも知れない。

一つの代表例として「電気磁気学」を取り上げる。

それは『電気』と『磁気』がその基礎概念となっている。

大学の授業で取り上げる内容の代表例が「マックスウエル電磁場方程式」であろう。『電界』と『磁界』がその専門的学理の理解の基礎概念となっている。

『電界』は『電荷』が定義されて初めてその空間概念が確定して、理解できる。『電荷』同士の間に様々な空間的関りが生じる現象の解釈論である。『電荷』には二種類がある。『正』の電荷と『負』の電荷である。しかしその『正』と『負』の空間的違いが如何なるものかについて解説した理論・論理を知らない。昔から先生が仰ったことや書物に書いてある事から、間違いのない真実と信じて疑わずに来たのが『電荷』の実状である。

その科学理論の根本を疑い、『電荷』の実像を理解しようと孤軍奮闘してきた。多くの電気磁気学の法則を考え併せて、その最も基本である『電荷』の概念とその真相を探る発表が『静電界は磁界を伴う』であった。

今改めて、問わなければならない。

大学で電気磁気学を講義されておられる先生方に。『電荷』の空間像をどの様に認識なさって居られるかと。ただ意味も無く『正の電荷』と『負の電荷』が引合うのだと述べるだけで、そこに学術論としての論理性が在るのですかと。

一定の変動しない高電圧を掛けた電極版の間は静電界と言う場の筈です。電気磁気学では『正の電荷』と『負の電荷』が両電極版に集合して、その向き合う空間が静電界と言う場になる。電気磁気学では、その空間場には決して『磁界』は存在しない筈です。

さてそこで、もしその空間が『磁界』で、コンパスが決まった規則による方向性を指すとしたら、その現象を電気磁気学でどのようにご説明為されますか。

その解釈には、『正の電荷』と『負の電荷』の間に何故引合う力が生まれると解釈するかの論理的説明が必要でしょう。『正』と『負』の間にどの様な力の概念が生まれると考えるかの論理性の問題でしかない。『電荷』には、運動力学の基本である『力』を生む対象の慣性は定義されていない筈です。物理学理論の『力』の定義に関わる基本問題の筈です。ニュートンの力学理論を御理解なさって居られれば、力と慣性は表裏一体の基本概念である筈です。『電荷』には慣性は定義されない筈です。なのに何故『力』が発生すると解釈できるのですか。

『磁気』に関しても同じ論理性の問題がある。N極とS極と言う定義概念の、その本質は何ですか。磁束が空間に伸びている像で捉えるようだ。『磁束』は力の原因となるのですか?『磁束』には力学理論の論理的対象としての『慣性』はやはり無い筈です。何故『慣性』の定義されないクーロンの法則が『力』の法則として成り立つと解釈されるのですか。『力』は慣性で抵抗があるからこそ生じる概念ではないのですか。慣性が無ければ、瞬時に無限速度で力の対象が消えてしまう筈です。それが科学の論理性ではありませんか。

電気磁気学と言う余りにも、現代物理学理論の根本理論であり乍ら、極めて曖昧な矛盾論が科学常識として大学で講義されている現状を如何に認識されているのでしょうか。

30数年前の『静電界は磁界を伴う』の実験的検証の意味を問うのです。

科学論の土俵は

(2021/01/28) 追記。今日は朝、頭の上を大きな音を立てて、ヘリコプターが通り過ぎて行った。最近無かったが久しぶりの意味不明の雑音飛行だった。今、昨年1年間の投稿記事を整理、確認している。『電子』の概念矛盾が科学論全体を混乱に陥れていると、改めて確信した。懐中電灯の特性(2021/01/25) は昨年の一つの成果としての纏めに成っていよう。子供たちがこの記事を見て、どの様な反応を示すか少し心配でもある。教科書が間違いであることを指摘したものでもあるから。筆者は大学で不要の人材と切り捨てられて、学術機関から30年以上前に追放された。しかし『静電界は磁界を伴う』の発表は未来の希望として世界に示す科学論との確信から、今日まで戦う土俵を無くし乍らもここまで思いを届けてきた。今日のヘリコプターの轟音は陰で何を画策しているか分からないが、闇の音に聞こえた。

科学論の対象範囲は無限の広がりになっている(2020/08/31)。科学論を戦わし、勝者と敗者がわかる土俵は無いのか。生活の夢はどのような土俵で勝ち取ればよいのか。

科学論は基本的に科学者の組織に所属して、その所属機関の一員、科学研究者として生活資金の保障の下で研究が可能である。その上で研究内容の発表を通して、その科学者としての評価が社会的に成される。その研究論文はそれぞれの研究分野ごとに異なる学術機関誌上に、その研究部門の専門の査読者によって吟味され、価値あると評価されて発表されるものと理解している。それが科学論の土俵であろう。科学者が競う科学論には、その特殊性によって土俵が限られたことになる様である。特殊という意味は、そこで論じられる内容が普通の市民にとっては余りにも限られた概念や意味の用語で語られるため、全く関わり得ないものである。特に現代科学論は狭い専門領域によって分野別に仕切られてしまった。それぞれの科学研究者は厳しい競争社会の中で、その専門的研究に専念して、それぞれの土俵上で格闘されている。

スポーツにはその技量を競う土俵がある。科学研究と異なる一般社会に開かれた市民生活の場では、日常的に様々な土俵がある。みんな生活と夢とを結びつける土俵であろう。

教育あるいは理科教育の土俵。理科と言う教科は自然世界を科学的に捉えて、その基礎教育によって培われた科学的知識や感性を、後に社会生活の上で科学者に成るばかりでなく、あらゆる場面で的確な自然現象の解釈に生かす能力として重要である。さて、そこで気掛かりな事がある。それは科学研究の現代的姿が全く教育とかけ離れてしまったことである。学校教育で取り上げられる理科教育内容と最先端の科学研究内容との間の隔たりが極めて大きく、矛盾を孕んだままに放置されている事である。昔の「ロウソクの科学」のようなファラディーの話の時代との隔世の感がある。その原因は何に在るのだろうか。生命の科学、医学生理学のような研究分野はとても複雑で高度の専門的であり乍ら、その基礎となる理科教育については何も殆ど疑問もなく、現状の基礎概念がそのまま科学常識として是認されている。高度な専門分野の研究者は、その最先端の研究に心血を注ぐが故に、学校教育の基礎、物理学の基礎などを考える余裕などない。では、物理学科の教育の専門家がその基礎の概念を研究対象として疑問を拾い上げるかと思っても、殆どそのような事はしない。原子構造が原子核とその周りを周回する電子で構成されているとの古典的認識(誰も古典的とは考えない)で、少しも違和感を持たないように思う。『電荷』概念とクーロンの法則の間の論理的矛盾など少しも問題にしない。それは何故なんだろうか。同じ『電荷』同士は反発して、近付かない筈だ。しかしコンデンサの充電現象は『正電荷』同士、『負電荷』同士が集合、密接する事に矛盾も感じない。その思考の有り方を一体どのように、科学論の論理性と言う観点から捉えれば良いのかと考え込まざるを得ない。

日本政府(文部科学省)の教科書検定制度。社会的仕組みの問題としても考えなければならないような気がする。『電荷』に関して以下に述べる。

『電荷』否定論。ブログで一般市民も理解できるかと、電気回路現象や基礎的物理論の矛盾を取り上げて論じてきた。既に10年は過ぎた。しかし、ブログ記事に対して、専門家が批判を寄せる事はない。少なくとも『電荷』や『電子』で物理現象を大学講義でなさって居られる方が多いにも拘らず、反論も期待したが全く無い。ブログでの記事はそれを期待したが、やはり科学論を戦わす土俵としては期待外れの無駄であったかと、誠に残念である。情報の溢れるインターネットの場に、そこに土俵が在るかとの期待でもあったが。教科書の内容と言う、誠に基礎的な事であれば、一般の市民が質問できる場として有効な土俵と考えた。やはり『電荷』に関する公開の場での討論会が在れば、開かれた科学論となるとの期待を持っている。そんな機会に壇上で参加したい。新しい『パラダイム』に向けて。

不可解な電荷

電気理論は易しいようで難しい。その訳の一つは数式で解釈する処に在るのだろう。数式で表現されると、数学的な内容を理解しようとして、電気的な現象の中味を理解する事に注ぐ余裕が無くなることも原因に成っていよう。後で不図不思議だとか、何故かと疑問が浮かんでも、考え直す時間的余裕がない為、後々までももやもやが残るのかと。ITなどに、質問で『電荷』とは何かと疑問が多いようだ。数学・数式は『電荷』が実在するかしないかを論証はできない。人が設定した条件・仮定の上での解釈しか論証できない。科学理論の根源的概念に、『電荷』、『質量』更に『光』あるいは『エネルギー』などを挙げて良かろう。それらの中で際立って不可解な物理量・概念が『電荷』である。多くの皆さんが自然界に実在すると考えているかと思うその『電荷』を否定する為に長い30年以上の道程を辿って来た。学術論の「雷」などもその『電荷』概念に基づいて論じられている。その『電荷』を考えることは、自然科学理論の何たるかを考えることにも通じることである。
《電荷問答》
初学者が後々疑問に思うだろうことを問答形式で取り上げたい。この辺の内容を授業をなさる先生方に良く汲み取って解説をして頂きたいと思ってもいる。授業の展開方法に、論理的矛盾は無いか?本質的に見過ごしている視点は無いか?本当に深く突き詰めて納得して教えているか?失礼を顧みず少し気掛かりな視点を取上げて論じてみたい。『電荷』とは実に不可解な概念であり、とても自然界に実在するとは信じられないから。

①クーロン力。クーロン力はこの世界には『正電荷』と『負電荷』の2種類の『電荷』が実在することを絶対的な科学理論の条件に据えて、その電荷間に働く力を数学的な式で表現した自然世界の法則である。と言うことが現在の電気理論の世界の科学常識となっている。その法則が論理的に矛盾だらけで、これが科学理論と言うものの実体を示しているのだ。ここでは高校生があるいは大学生が教室で学習する教科書の内容の意味を自分で解釈する手掛かりに成ればとの意味を込めた解説の心算でもある。本当のところは、電気工学や物理学を学んだ、その後の大学院生あるいは現役の先生方に考えて欲しい内容でもある。

《問答第1》 そこで、最初の『問答』となるのはその電荷の『正』と『負』の違いはどのようなことなのか?形が違うのか?大きさが違うのか?色が違うと言うことは無いだろう。何が『正』と『負』の違いを生む原因となっているのか?

《問答第2》 同じ電荷同士、『正』と『正』などは反発し合う。異種電荷同士、『正』と『負』の間では引き合う。それがクーロンの法則の基本的内容である。そのような力の掛り方が違う訳は、原因はどのような意味から起きる事か?科学論は理屈が大切であるから、因果律を大切にしたい。何か『電荷』の間の空間で異なる現象を生む理由が有ってこそ言えることであろう。

《問答第3》 図のように、+Q[C] や-q[C]で同じ『電荷』同士が集合する状態を説明に使うが、その集合する訳は何ですか。クーロンの法則に逆らって同符号の『電荷』が集合する理由は何ですか?それは雷の発生原因として学術論で論じられている解説の理由にもなることであろう。摩擦電気で『電荷』が『正』と『負』に分離し、同符号同士の『電荷』が集合すると言う論理にも関わることである。その集合の原因となる力は何ですか?

②コンデンサの充電・放電現象。コンデンサはエネルギーを貯蔵する回路機能素子である。しかし余り『エネルギー』を貯蔵すると言う解釈が示されていないようである。教科書では『エネルギー』より『電荷』の貯蔵機能素子と見られているようだ。『電荷』で解釈することが本当に『エネルギー』貯蔵機能として捉えられると言うのか?それは電気技術感覚から考えても無理に思える。本当に理解してもらいたい事は、感覚的にコンデンサの貯蔵という意味を、『エネルギー』の空間像として捉えて欲しいのである。『電荷』には『エネルギー』が見えないから。

《問答第4》 コンデンサの充電はどのようになされるか?直流電源のバッテリーB.にコンデンサ(容量C[F])を繋ぐ。たちどころに電極板の正と負側に『電荷』が『正』と『負』に分かれて集合すると解釈される。《問答第1》での『電荷』の2種類の話であるが、『正電荷』は基本的には陽子の電荷で、『負電荷』は電子の電荷となっている。しかし、陽子が自由に電子のようには移動するとは考えていないようだから、原子の電子が抜けた『ホール』と言う原子イオンを『正電荷』と看做して論理を組み立てているようだ。電極板の原子は移動できないから、その正電極板の金属原子の中の電子が負側の電極板まで速やかに移動しなければならないことになる。と言うことは直流電源のエネルギー供給の役割は正側電極板から電子を引き出し、負側の電極板まで運ぶことに費やされると考えるのだろうか?さて、コンデンサはエネルギーの貯蔵がその機能である。確かに電子を引き剥がして負側まで運ぶとなれば、仕事をすることになるとは言える。それでは何処でエネルギーが費やされるか?となる。コンデンサは電源のエネルギーのある分を受け持って貯蔵する役目であり、『エネルギー』は消費しない筈だ。エネルギーが費やされてしまうのはコンデンサの機能としては意味が違う。正電極板の原子から電子を引き剥がすにはエネルギーが要る。それはコンデンサの面目を潰すことに成り、許されない。原子から電子を剥ぎ取る力を電源がどのように働くのか?原子に対して電源の電圧は働きようがない筈だ。例えクーロン力(電荷間の)を仮定したとしても、直流電源の一方の端子だけでは何の電源電圧の役目も果たし得ない訳だから。勿論電源とコンデンサを繋ぐ導線内には電界は生じ得ない。この事は物理学会の専門家・学会発表の座長さえ電界が在るとの認識で有ったのは今でも驚きの一語に尽きるが。どのような意味で電界が有ると成るのかその辺から討論をしなければ話が噛み合わないのも確かなことである。導体内に、現在の物理学理論で解釈すれば、電界が在って初めて、電子が移動する可能性は生まれると解釈されている。電界で電荷に力が働くと言う理論そのものが自然の真理ではないのだが。しかしそれでもその科学常識の理論に従うとしても、そんな電界が電源電圧に因って、どのように導線内に生じると考えるのだろうか。結局、直流電圧で電極板に正と負の『電荷』を分離する理屈は成り立たない。当然直流電源が正と負の『電荷』を電源内部から供給する機能も同様に成り立たない。そこで初めて、電源の供給する『エネルギー』のコンデンサへの貯蔵がどのようになされるかの問題意識が生まれる筈だ。『電荷』でなく『エネルギー』の実在性を意識することが物理学の極める視点でなければならない。直流電源の負側の導線の近傍空間を通してコンデンサ内の空間に『エネルギー』が貯蔵されるのがこの場合の電磁現象の真相である。 

《問答第5》 電源が電池でなくて変圧器の場合も取上げた。はじめに、電池の場合は電池の『電荷』がコンデンサに供給されると解釈されるかと考えたが、上の《問答第4》でそれは無いことが分かったと思うから、変圧器を取上げる意味も無かったかもしれない。しかし、この変圧器電源ではコンデンサの『電荷』貯蔵機能は直流の場合よりさらに交流の為、極性まで交互に代わるだけ複雑になろう。『電子』は両極板の原子から剥ぎ取る機能の論理性を問うことになる。『電子』はそんなに光速度の速度対応は出来ない筈だ。それ程の論理的な困難が在っても、『電荷』『電子』で理論を構築するのかが問われる筈だ。それに対して『エネルギー』は光エネルギーのように、電線路空間を通してコンデンサ貯蔵機能に光速度の素早さで対応可能である。

むすび

『電子』論の矛盾を力学論から拾い上げて、アンペアの法則の論理的矛盾を解説する前にもう一度、『電荷』の持つ科学概念をサイエンスコミュニケーションの題材として取り上げた。ここでも数式に頼らないで、前の記事力の概念と電気物理に関係した意味で取上げた。

力の概念と電気物理

視点一つが世界を変える。加速度の存在しない物に『力の概念』は存在しない。『電荷』には加速度が生じない。

不図疑問が湧く。今までの認識に疑問が種となって、新たな世界が驚きの中に膨らむ。今回は『力』である。電気と言う目に見えない現象故に、その世界描写は数学的な表記によってとても抽象的に描かれる。多くの法則によって体系化された学術理論の世界である。科学理論の世界は長い歴史の重みを背負って、何百年の時に亘って専門家の追究の試練に曝されて生き残って来た学術理論である。その根幹を成している概念は『電荷』である。それはクーロンの法則と言う偉大な科学技術論を論ずる基幹法則として誰もが一度は聞いたことのある法則であろう。『電荷』間に働く『力』の意味を解釈する法則である。科学理論は社会的に認知された、学術機関の専門家が推奨する権威ある理論で、広く学校教育での標準教科書として取り上げられたものである。そんな理論の根幹の「電荷」を否定することは、社会的大きな混乱を引き起こすかもしれない畏れ多さを抱える事でもある。自分一人の科学技術感覚からの『電荷』否定の挑戦であった。クーロンの法則を斬る (2013/01/06) の記事から6年が過ぎた。今回その法則に関して、力学理論の『力』の概念から改めて『電荷』否定の論証視点が浮かび上がった。気付けば当たり前のことと思う様な『電荷』に潜む矛盾点である。

力学論の力の概念

運動力学の『力』とはどのようなものか。そんな疑問を抱くことに意味があるのかと思うかも知れない。力が働くという意味で感覚的に感じるのは力を掛ける対象に、力に逆らう反作用のような抵抗がそこにはある。それが慣性体としての質量の意味だと思う。運動力学で力が掛ると、その対象は力によって加速度運動に成る。もし力の対象が質量体で無かったなら、その対象はどのような運動に成るのだろうか。図の力の概念に示したように、質量M[kg]が力に逆らって速度の変化を受けないような作用があるから力を掛ける側に、対象に作用するという意味が生じるのだ。もし対象に質量がなかったら、加速度と言う概念は存在しない。

電荷と力

図1.電荷と電界と力

さて、電気物理学では『電荷』がすべての電気現象の理論的論拠となっている。電場に『電荷』が有れば、その『電荷』はその点の電界強度によって『力』を受けると成っている。(1)式のように、空間にある電荷集合体+Q[C]が有れば、その周りの空間は立体空間全体に電界強度E[V/m]で定義付けられると成っている。その空間に、他の『電荷』が存在するとその電界Eによって力を受ける。電荷が-q[C]とすれば、(2)、(3)式の力を『電荷』が受けると言う。(3)式が有名なクーロンの法則の式である。なお (r/r)は座標ベクトルrの方向を示す単位ベクトルの意味である。(2019/12/29)追記。以下の「・・」内の部分は間違いである。荷電粒子が電磁場で力を受けて運動云々の意味は電荷と電界の間で起きる筈がない。粒子加速実験では電界で加速などしていない。電磁石の磁場での加速と言う実験である。正と負の『電荷』による電界など作れない。『電荷』量の確定ができない筈だから。間違いは次の文章である。「荷電粒子が電磁場で力を受けて運動する現象は実際にあるから、確かに間違いとは言えない。」しかし、上に示したように、『力』の概念で述べたことも間違いではない。質量がなければ、『力』は掛からない。『電荷』に慣性は無いから、それは『力』の対象にはならない筈だ。もし力が掛れば慣性のない『電荷』は直ちに無限速度で飛んで消えて、運動論の対象にはならない。前にも、荷電粒子加速と電磁力 (2015/01/31)で問題にした。今回不図した思い付きで、『力』の概念について気付いたことが質量の慣性と言う意味であった。クーロンの法則を斬る (2013/01/06)で『電荷』とその上の(3)式の否定を論じた。今回はっきりと納得できたのが質量の慣性と言うものによって初めて『力』が意味を持つという事であった。それなら実際に電磁場と言う空間での荷電粒子加速現象はどのような意味なのかという自然世界の認識の課題である。実際の電磁場での粒子加速運動論には必ず質量を必要とするから、電子にも陽電子にもすべての粒子には必ず質量が付帯している。そこで一応運動力学論としての辻褄が合わせられている訳である。しかし電気回路の電流論に成ると、電流の単位アンペア[A]=[C/s]には決して質量は必要ないから、『電荷』だけで論じられることになる。この『電荷』と『力』の問題は、世界で実施されている荷電粒子加速実験の理論的根拠の問題でもあろうかと考える。

電荷と電磁場

もう一度電荷とその電界の意味を取上げて考えて置きたい。『電荷』の意味を考える時、とても不思議に思うことがある。或るプラスの正電荷の集合体が空間にあると設定されて解説される。クーロンの法則に直接関係する電磁場の論考に於いて、どのような原理で同一の符号の『電荷』が集合し得ると考えるのか。同一符号の『電荷』は離隔距離の2乗に反比例して強力に接近は拒否される筈である。子供達に教える教育の場で、クーロンの法則が取上げられて、説明される時には同一『電荷』の集合は排除されると教える筈である。しかし、図2.のようにいとも簡単に『電荷』の集合体で理論の解説が成される。これも科学論の不思議と言わなければならない。その時の集合電荷の離隔距離はおそらくゼロの意識で論理展開しているのだろう。ゼロの2乗分の1は無限大の排斥力となる。この事は教育者側の科学論の論理性の問題としても無視できない矛盾論の筈であろう。それはさて置き、問題は電荷周りの電磁場の意味である。図2.電荷とエネルギー のように空間の誘電率がεo[F/m]とすると、その空間のエネルギーをどのように理論的に解釈しているかという問題である。係数が(1/2)の問題はさて置くとして、一応wr=(1/2)εE^2^ [J/㎥]のような電界のエネルギーが空間にあると解釈する筈である。『電荷』からの空間距離rの関数として、『電荷』周りにはエネルギーが分布していると解釈してよかろう。しかし、物理学理論で空間の解釈をする時はこのようにエネルギーを認識している筈であるが、荷電粒子加速などの場合には、この空間エネルギーをどのように解釈しているのかはハッキリしていないようだ。このエネルギーの問題は理論物理学における『電荷』の概念の捉え方に関わる問題であるから。と言うのは、このエネルギーが空間に存在していると解釈するかどうかが最初に問わなければならない問題なのである。そのエネルギーは電界がある限り、空間の無限遠までも希薄になっても存在することになるからである。空間に存在すると解釈するなら、そのエネルギーを理論物理学ではどんな物理量と考えるのか。即ち『電荷』の一部なのか、『電荷』と無関係のエネルギーなのかと言うことを問う問答なのである。この解釈・考え方は至極幼稚な素人的素朴な疑問なのである。しかしこのような考え方が、理科教育・自然科学論に求められて居る易しさの科学論の姿勢であると考える。高度な数学的理論展開では、市民が理解し、納得する自然科学論にはならないから。本当の自然科学論は日常用語で解説できなければそれは正しいとは言えないのだ。何故このように『電荷』とその周辺空間のエネルギーの問題を論じるかは、高度な理論を展開されている専門の方々こそお分かりの筈であるから。ついでにもう一つ図2-1.電荷と力とエネルギーとして、単位電荷が空間に分布していたとする。この場合は、『電荷』間には複雑な力が掛ることに成り、その空間のエネルギー分布も正と負の電荷によって、種類の違うエネルギーが存在すると解釈するべきなのかなど理論的に決まりの付け難い問題が残るようだ。本来エネルギーには『正』と『負』は無く、ただ『エネルギー』が存在するかどうかの問題であるから。そういう意味で、物理学理論の易しい解釈を求めての論考である。易しい理論的解説は難しい数学や数式は必要がない筈だ。『電荷』が『エネルギー』を持っているか、いないかを答える事ぐらい難しい事ではなかろう。結局『電荷』とは何かを問うことである。電気磁気学、電気回路論あるいは電気工学のそれぞれの解釈の場で、『電荷』が如何なる実在量かの描像を示す事が求められていることと思う。それは次の謎解きの話になろう。

理論と電磁現象の間の謎解き

波形観測に欠かせない電気製品にオッシロスコープがある。電子銃からの電子ビームを平板電極間に通すと、その電極の電圧信号に従って、電子ビームの方向を制御できる。蛍光面にその制御されたビームの軌跡が波形を描く。その原理が電子電荷の空間電界による制御と解釈される。これが科学技術の電磁現象解釈原理となる。技術としてはその原理を理解することが必要であり、それだけで十分立派な電気技術者の仲間に入れる。教育もその意味で技術理論の習得への期待が国家の教育方針とされてきた。それはそれで良かった。『電荷』と言う概念を考え出して作り上げた意味はその為に有効であった。ところが、その科学技術用の理論を深く突き詰めると、とても曖昧で、論理性に絶えない矛盾が潜んでいることに気付く筈だ。科学技術教育ならそれでも良かった。しかし、自然現象を説き明かす物理学理論となれば、その矛盾を抱えて頬被(ホウカブリ)したままやり過ごす事はできない筈だ。ではそれはどんな矛盾で、何故理論が論理的で無いと言うかを説明しなければならないかも知れない。聡明な皆さんは既にお分かりの筈であろうが。その曖昧さを取り除くには、『電荷』が理論に絶えない概念であることを理解しなければならない。 f=q[v×B]+qE [N] の式で解釈するローレンツ力の力が掛る対象は電荷q[C]である。その式は質量が無い式だ。荷電粒子にこっそり質量が有ると条件付けられてはいるが、それは運動論を展開するには質量がなければ無理だからである。しかしあくまでも力の掛る対象は原理の式には『電荷』しかない。『電荷』には慣性がないから力が掛る対象にはなり得ないのである。しかし現実は、この式で解釈する通りの荷電粒子と認識する『電荷』のビームが制御される。この論理的不都合を解決する解釈法が一つあるのだ。それが『軸性エネルギー流』だ。電磁場空間内の空間電磁エネルギーの分布を理解する道である。『静電界は磁界を伴う』と言う奇妙な表現内容に鍵がある。電界と言う電場空間は、むしろ磁場空間なのである。磁場空間は磁束がある訳ではなく、軸性エネルギー流の場である。言ってみれば、『電子』も軸性エネルギー流子なのである。エネルギー流空間に電子と言う軸性エネルギー流子が通過すれば、エネルギー流同士の間の近接作用力が働くことになる。過去に載せた関連記事の図を挙げて置く。電子スピンとは?-その空間像-(2011/02/09)

素粒子-その実相-(2012/07/31)

エネルギー流と結合(2018/10/10)

むすび

問題の解決は『電荷』とは何かに答えることである。それはまた『電子』とは何かに答える事でもある。そこに未来の道が観えて来る筈だ。空間に実在するということは、その空間像を描くことでしか解決できない。抽象的な数式には姿が観えない。軸性エネルギー流は磁場と言う空間の物理的姿を示した空間像である。身近にあるマグネットのNSの磁極近傍の空間に在るエネルギーの流れの様子を示したものが軸性エネルギー流であり、それは磁極の表面空間を流れている回転エネルギー流である。その空間に実在するエネルギーを見ることはできない。それを計測することも、観測することも出来ない。その観えないものを『電子』などと捉えて、科学理論を構築して来たのである。『電荷』概念の矛盾に気づくなら、空間のエネルギーが(心にあるいは感覚的に)観えて来る筈だ。そのエネルギーに関する空間論は観測できないから科学論に成り得ないかもしれないが、そこに至らない限りは自然に心を添えないと言うことであろう。『エネルギー』を認識すれば、自然世界の本質が観えて来る筈だ。以上でクーロン力の矛盾についての論説は終わる。次の記事で、アンペアーの法則の回路電流における電子流の矛盾について述べたい。

原子・分子結合力と周回軌道電子論の矛盾

初夢の恐怖  初夢の恐怖 原子核の周りを今年も元気に電子が高速で回っている。科学の世界も安泰であります。そろそろ独りぼっちは寂しいので、纏まった分子結合への夢を見た。回転する電子同士が手を繋ぐ。中心の核私は電子に振り回されて目が廻る初夢の恐怖。それでも電子周回軌道原子構造論は安泰と言う初夢。夢の謎解きが待ちどうしい。2018/01/11 追記。

はじめに 世界は光が支配している。宇宙全体を支配するのは光である。星も砕け散れば光になる。光は原子の全てを創り上げている。質量は光である。光はエネルギーの空間像である。世界はエネルギーである。人類よ、エネルギーの意味を捉えよう。エネルギーに質量が必要と言う誤解を解こう。自然は単純である。雷の発生理論が上空での氷の摩擦での電荷分離現象が原因であるなどと言う研究機関の解釈が罷り通るのはやめて欲しいと願う。

原子とは 複雑怪奇が原子から始まった。『電荷』がその基になってしまった。電荷は光になるか、ならないか?世界に存在する全てが光になる。光を含めてエネルギーが世界の根源であるから。原子は原子核とその周りを周回する電子から成り立つとなっている。その原子核は陽子(正電荷と質量)と中性子(電荷なしの質量)の集合体と成っている。理解できないこと、中性子は正電荷と負電荷が合体して中性なのか、電荷に無関係なのかが明確か?正電荷の陽子が陽電子と中性子に分裂するとも言われる?核の陽子がクーロン力に逆らって集合体を構成する原理は何か?こんな事を言ってはいけないだろうが、そもそもプラスの陽子と中性の中性子で原子核が成り立つという必然性は何なんだろうか。湯川秀樹博士の中間子論で核理論は成り立っていると言われるが、筆者にはとても理解できないので窮してしまう。。最も単純な原子は水素である。一つの陽子の核と周回運動する一つの電子から構成されていると。陽子も電子もすべてエネルギーから出来ている。陽子も電子も消滅すれば光を含めたエネルギーに変換される。世界はエネルギーと等価である。

原子・分子結合力の原因は電荷かエネルギーか 電荷概念を否定し、クーロンの法則を斬ると言えば電気磁気学の伝統的な論理の拠り所を失ってしまう。何の頼る術もない。しかし、原子同士が結合し複雑な高分子から生命現象まで司る世界は現実だ。質量の万有引力では原子結合は説明できなかろう。他に結合する力の原理は何があるか。そこに「電荷」が救いの神に成っていた。しかし『電荷』とは何かと尋ねても答える術もない。プラスとマイナスの『電荷』の空間的存在形態の違いを明らかに出来ない。プラスの電荷は突起を持って居るとか、マイナスの電荷は陥没欠損穴を持って居るとかの空間的違いが無ければ、プラスとマイナスと言う実在性を論理的に説明できない筈だ。そもそも電荷がどのようなものかを説明もできないし、確認出来ないのだ。摩擦によって熱は発生する。摩擦熱だ。熱はエネルギーだ。古代から人は摩擦で火を起こして来た。摩擦で熱エネルギーに変換できる事は見て理解できる。不思議な事に摩擦で電気が発生すると解釈した。摩擦電気と言う。引き付ける力が存在する現象を眼で見ることが出来た。摩擦によって確かに引き付ける力を産むと言う事だけは確かである。その現象が『電荷』が生まれたからであると言うことを検証し、確認出来る訳ではない。電荷は眼に見えない。しかし、眼に観えない元素の世界の科学論が結合力を必要とした事に因る必然的結果として、摩擦現象の引き付ける力が元素の世界に結びついたと考える。誰も否定できない科学論になった。摩擦が眼に見えないがプラスとマイナスの電荷を産むと解釈した。摩擦すると分子結合の物質が摩擦面で、原子の外殻を周回する電子を剥ぎ取り、どちらかの物質側の一方にその電子が移動でもすると考えるのだろう。その為二つの物質で電荷の平衡が破られそれぞれ一方の電荷に分かれると考えるようだ。その電荷分離の原理はどちらの電荷が集合するかの詳しい訳は原子論的に少しも説明されない。摩擦によりクーロンの法則に反する電荷移動が起こる理由が見えないのだ。この摩擦の場合はクーロンの法則は忘れないと理論にならない宿命のようだ。ヴァンデグラフ起電機が後押しもした。丁度粒子性と波動性のように科学理論に横たわる宿命として閑却するようだ。誠に理論は都合が良いのだ。しかし今、エネルギーと言う空間に実在する物理量、光を認識すれば、物を引き付ける原因が『電荷』でなければならないと言う事を一概には言えない筈である。先ず熱エネルギーが放射現象として空間に実在する意味を理解できるかの問題にもなろう。質量には無関係の熱エネルギーを。布団を陽に乾せば、熱エネルギーが籠って暖かくなる。その熱エネルギーである。摩擦現象が熱を産むことは誰もが知っている。しかし科学論の引力に成った時、摩擦熱の意味は消えて摩擦電荷が主役に躍り出る。電気の解説になると、摩擦で熱は発生しないかの如くに、摩擦で発生するのが電気と決まっているかの解釈であるが、そこに間違いの基がある。それが誠に都合よく現象を説明出来たから、摩擦電気と言えば納得できる解釈として世界の常識となった。雷まで氷が摩擦し合うことで電荷が発生するとの解釈で説明されて、その論が認知されている。摩擦は仕事のエネルギーを対象物に与えるから、何らかのエネルギーがその対象物に蓄積されるのはエネルギー保存則の原理通りである。そのエネルギーは殆どが熱である。物体に熱が溜まれば、その近傍の空間にその熱エネルギーの影響が現れるのは当たり前のことである。その近傍空間に現れるエネルギーの影響がどのようなものであると認識するかの問題である。ドアノブの火花―熱電変換ー 2014/02/09 に関連記事。

周回軌道電子論の矛盾と言う意味 原子構造に関する研究に全く携わった経験の無い者が論じる事が如何に失礼かと思いながら、書く事を許して頂きたい。電気技術感覚からの原子構造に対する感覚的矛盾論である事を述べたい。専門家から観れば、愚にもつかない内容かもしれない。核燃料のウラン235もやはり92個の周回電子軌道論で解釈されるのだろうと言う点で、数Å内にそんな電子軌道が成り立つ筈が無いとクーロンの法則との矛盾を否定できない困難が理解を妨げるから。周回電子間のクーロンの法則の排除力を考慮せずに、それ以上に離れた遠隔力の核のプラス電荷との間でクーロンの法則が有効に働くなどと言う意味が原子構造空間内で論理性を説得できるのだろうか。この論の基にはクーロンの法則を斬(2013/01/06)での『電荷』概念否定の意味がある。この正と負の電荷間に働く電気力が周回電子と中心核を纏める構成源の力と成っている。その原子と他の原子間に働く分子構成力として、主体となるものは原子外周を回転する電子が担っている事になっている。回転しながら原子間の構成力となるにはどのような空間像で理解すれば良いのだろうか。2価、3価と結合手が多くなれば原子同士が超技巧結合手法でも採らなければ原子が眼を回してとても耐えられる筈は無いと思う。そんな周回運動する電子同士に因る分子結合が可能と言う理論が罷り通る科学論とは本当に不思議な事だ。付いて行けない超高等理論だ。

渾沌の坩堝にマッチの火

御無礼の段ご容赦願います。最近頓に思うことは、物理学の基礎概念を掘り下げてきたら、科学研究の現場から程遠い辺境を彷徨っている感を強くする。そんな我儘論を記事にすることが社会的混乱にならなければ良いがと、そんな思いもない訳ではない。しかし、特に「熱エネルギー」に対する検索記事を見ると、とても私が理解できる内容ではなく、本当にそれで良いのかと半分怒りにも似た思いがする。『熱』に対する気分が標題に近いかもしれない。
渾沌の坩堝 こんな言葉を標題にした訳はその意味が表しているようだ。

渾沌・坩堝渾沌、坩堝 辞典から拾い出してみた。物理学理論と言うと、そこには高等数学が理解できない自分の入り込めない壁がある。まるで混沌とした世界に彷徨うような気分だ。その煮え滾った科学の坩堝の中を覗いて、マッチ棒の火で照らすような気分かもしれない。
質量ーエネルギー変換原理 アインシュタインが唱えた有名な原理がある。その単純な表式の意味を理解している心算でいたが、科学の世界の解釈と異なる認識のようで誠に渾沌とした思いになる。

質量エネルギー変換質量エネルギー変換 私が理解している意味は、質量はエネルギー(空間の中に独立した)に変換し、その変換した質量分は消滅すると解釈していた。何十年も前からそう思っていた。ところが分からなくなったのは、科学理論では質量はどこまでも質量のままで変換しないと解釈しているように思える。陽子も中性子もさらに電子も変換しても質量は変化しないと解釈しているように思える。全く異なる理解であったと、今頃になって戸惑う。自然世界は輪廻転生、原子も陽子も変転流転の世界の姿で、常に変わり続ける。先日、ネーチャーダイジェストでアルカリ金属の爆発の秘密が明らかに の記事を見た。アルカリ金属が水と反応する時の爆発の現象が水素反応でなく、核の陽子の『クーロン爆発』現象だという意味であった。要するにナトリウムなどの原子核の陽子のプラス電荷間でのクーロン力による反発力が原因であったという意味と解釈した。不思議に感じたのは、そんなに簡単に原子核が分裂するものなら、原子などそれこそ変転流転の元素変換が常に起きている筈だと。しかし本当に理解できない意味がある。アルカリ金属の水との反応で、発生する『エネルギー』は相当の量であろう。原子当たりの放射エネルギーは何ジュールなんだろうか。そこでもし、陽子一粒が質量ーエネルギー変換で消滅したとしたら、その発生エネルギーは如何程かと計算した。その結果は示した通り、熱のネの字の量にもならない。それでは爆発時のエネルギー量は何がどのような機構で発生させたのだろうか。質量がエネルギーに変換する以上の発生原理は理解できない。不図、マッチ一本の発火時の放射エネルギーと比べてみたくなった。皆さんも、『エネルギー』の量は熱量カロリー1[cal]とか仕事量の単位ジュール1[J]などで、高等学校でジュールの法則として教わった事がありましょう。科学について考える時あるいは料理をする時『エネルギー量』の事を少しは頭に思い描いて欲しい。やかんで湯を沸かす時、水1リットル(1[kg])の温度をただ1度上げるのに熱エネルギー1[kJ]、1000ジュール必要です。アインシュタインが唱えた質量エネルギー変換の原理によれば、それと同じエネルギーを得るためにどれだけの陽子が消滅する必要があるかという物理学の基礎問題になるのです。1×10^13^個という途轍もない数で初めて水1リットルを1.5度温度を上げるだけのエネルギーしか得られないことになるのです。原子核分裂の理論で、ウラン235の『結合エネルギー』を開放する原子力発電技術の『エネルギー』の意味もとても不思議なものに思える。その『結合エネルギー』解放という意味さえ分からなくなってしまった。少なくともマッチ一本の発火エネルギーでも数ジュールの熱エネルギーには成っているだろう。エネルギーの単位を感覚的に捉える意味で、アルカリ金属の発熱現象の意味をもっと詳しく知りたいとネーチャーの記事で思った。
マッチ一本の火 マッチ売りの少女。ハンス・クリスチャン・アンデルセン(1805/04/02~1875/08/04)が1848年に出版した。安全マッチ(塩素酸カリウムと赤燐を分離した)が1855年に発明されたとある。「マッチ売りの少女」が出版された時には、未だ今見かける箱入りのマッチはなかった。黄燐のマッチで、すぐに発火する危険な物であったという事を検索から理解した。出版から7年後に初めて『安全マッチ』が発明されたという。さて本筋に戻す。マッチ一本の発火に伴う放射エネルギー量を現代科学計測技術で測定が可能であるかと。科学が市民に身近な存在であって欲しい。そんな意味で、科学研究の高度な現代物理学の世界がとても高度で、深遠な技術のものに思えるが、そんな進んだ世界なら、マッチ一本の放射エネルギーなど簡単に測定できるだろうと考えてもおかしくはなかろう。原子核の陽子一個の消滅時に発生するエネルギーとマッチ一本の放射エネルギー位は比較出来なくてはならないだろうと思う。

クーロンの法則を斬る記事を書いた事もあり、『電荷』の科学論など遥かに遠い世界になってしまった事もこの記事を書いた基に在る。

磁束と科学理論

身近な生活の中に溶け込んでいる科学の不思議がマグネットである。冷蔵庫などのメモ止めに重宝だ。科学で説明を求めると途端に難しい話になる。磁束とクーロンの法則が理解を妨げる絶壁となって立ちはだかる。科学理論の根本法則は覚えなければついて行けない。理解の範囲を超えている。その意味を、理解できない自分の感覚でまとめて見た。磁束って何だ!磁束の意味? 方位磁石に鉄Feを近付けるとその方向に向く。何か力が働いたからだ。冷蔵庫の扉には鉄板が使われている。マグネットとその鉄板の間に強力な力が発生する。それは近付くほど強くなる。メモを挟んだマグネットは扉の鉄板にがっちり張り付く。その力と距離感との感覚的認識とがクーロンの法則で誠に矛盾なく納得できる。しかし科学理論と言うものは誠に不思議なものである。マグネットも、変圧器理論も磁束無しには説明できない。ところが磁界に関する物理学理論では、div B =0 がどこの磁場空間でも基本条件となっている。それは磁束を発生する源がないと言う意味である。世界に元(原因)が無ければ結果(磁束)は発生しないと言うのが世界に常識である。確かに磁束は感覚的にはとても馴染みやすい概念である。そんな便利な概念に何故疑問を呈するかと訝る人が多いようだ。特に磁束概念で電気理論を教えている方々に。もし磁束を描こうとしても、その表現法は閉じた円環でしか表現してはいけない事なのだ。磁束の増減を、矢印では描けないのだ。

磁束(と言う概念で解釈する物理量)の本質はエネルギー回転流だ この事は磁界・磁気概念の本質に述べた。

鋏の磁化 手元に在る鋏を調べた。磁化されている。SNSと刃先、中間および手元と三極に磁化されている。ナイフも磁化されている。摺り合わ(摩擦のエネルギー貯蔵)される用具は磁化されるのか?

『電荷』否定への道

全てがそこに始まった。『電荷』否定の社会的挑戦の道。昭和60年3月、長岡技術科学大学から不要人材と追放され、4月長岡工業高等専門学校での歓迎されない会での、『何の為に来たのか?』の孤立の戦いに始まった。『中曽根臨時教育審議会』の存在も知らなかった。知ったのは長岡高専から逃げてからの、昭和62年9月、テレビニュース画面に映った中曽根康弘総理大臣の姿を見てからであったと思う。自分がその抹殺対象だ等とは微塵も知らなかった。中曽根総理大臣は海軍主計局に居たと微かなうろ覚えにある。ミズリー号での、『無条件降伏』調印式への日本代表団送迎ボートクルーであった父とその後の戦後処理を知っていたかとも考えられる(2014/6/2 これは今考える想像の話である)。このゴムボートによる送迎の映像は隠されてしまった為もう見られないのかも知れない。そこに戦争の意味が示されているが、教育には生かされないのが残念である。戦争の実情を教育に生かせず、隠している。私は何者でしょう(3)故郷貝野村と舞鶴鎮守府 に関連。社会的な絆を持とうと社会に関わると、裏方で怪しい雰囲気に苛まれて来た。理由は分からないが、存在を否定されているように思える。そんな具体的な事件が起きた。私は偽物か の様な事がいつも有ったようだ。『電荷』否定への道は遠かった訳だ。

信じられない疑念事件 高専での4月始業後の最初の授業で感じた違和感。5年生の卒業研究のテーマを決める説明オリエンテーションの時間であった。何か廊下に人の気配を感じたが、見た時には誰もいなかった。相当ザワザワした雰囲気があった。その後相当経ってから、教室授業(4年生電磁気学)が盗聴されているのだと確信するようになった。翌年の4月から、電気科4年生の教室が変更に成った。今まで一度もそのような教室が変わる事はなかったらしい。それは、廊下側に窓が無かったのが、新しい教室は廊下から良く見える部屋に成った。何月だったかは定かでないが、ある日明らかに教室の授業内容・黒板の板書を写真に撮って行ったことを確認した。写真を採るには、窓が無い教室では巧くないからの教室変更だったのだ。写真に撮ったのは、丁度アンペアの法則を、直線導体からの距離に対する磁場分布を計算していた内容である。微分演算rotによる解釈をして示していた内容だった。きっとそんな計算をした事が無い人達であっただろう。

(2021/07/03) 追記。上に記事内容を少し補足する。一本の直線状の電流と言う物理的意味は全く無意味な事であった。電流と言う計測量は必ず二本の電線で囲まれたような空間でなければその概念そのものが無意味なのである。決して導体で囲まれた空間でなければ、電流と言う概念は存在しないのだ。

孤立無援の精神的緊張 電気磁気学授業内容を準備するに、特別に意識が研ぎ澄まされていたのだろう。皆当たり前の『電気の法則』が全て吟味対象となっていたと思う。『アンペアの法則』『ファラディの法則』を矛盾に感じ始めたのが全ての始まりに成った。創造は深い傷から生まれる(斎藤進六先生の言葉)。精神的緊張感が『電荷』否定への確信を生んだ。教科書的の電気理論は理屈に耐えるものでない事を確信した。しかし、大学の教授陣や電気の先生に話をしても、誰もチンプンカンプンで、何の疑問も持っていない事だけは確認できた。そんな中での理屈の組み立ての戦いをどうするかも、全く先が見えなかった。全くの無鉄砲の中に立たされたと感じた。真剣に考えれば考えるほど、未知の矛盾と立ちはだかる壁が増えるだけであった。中でもアインシュタインの『特殊相対性理論』の不可解な論理には頭が混乱する程悩まされる壁であった。専門の解説書を読めば読む程、難解な論理で覆われている。たった光の速度の意味がそんなに複雑な瞑想の世界を理解しなければならないのかという混乱。ミンコフスキーの光空間もその混乱の最たる原因である。今になれば、みんなまったくの無意味が綴られているだけであると言えるのだが。周りを全て無視して進むよりほかに道はなかった。それが『電荷』否定の道であった。無法松も、無鉄砲も何でも御座れの道しかなかった。科学と人間 自然科学と人間性 人間とはどこに自然の真理を求めている等と言えるのだろうか。人間程自然の実相からかけ離れた自然の生命の容は無いのじゃなころうか。この自然界が生んだ人間であるにも拘らず。他の動植物を見て、どこに人間程真理、純粋、真剣さから掛け離れた存在があるだろうか。裏と表の両面性の人間。みんな真剣な一直線に生きている。人間程、特別に裏の世界が大きい生き物は無い。矛盾をあたかも正義のように繕う人間。原子力に『爆弾』も『発電所』もみんな社会的正義のように振る舞う人間。人間の自然科学性を研究対象とするのも必要かもしれない。こんな論も『禪』からの道かもしれない。日本から発信の世界に向けた東洋哲学的自然観。

コイル磁場とアンペアの法則 コイルの磁気導線に電流I[A]が流れているという。その導線の周りの磁界H[A/m]を周回積分すると、電流に等しくなる。2πrH=I がその数式表現である。導線をコイル状に巻いても、そのコイル導体の周りには同じように関係する数式が成り立とう。 この関係は以前の記事ファラディ電磁誘導則・アンペア周回積分則の物理学的矛盾に示した図版⑥にある。その原図を載せておく。アンペア周回積分則と・ その図版⑥のコイル周りの磁気をエネルギー流として解釈すべきとして示した。コイル磁場の断面図②と平面図③にエネルギー流を示した。図①の磁束Φなどは物理的には決して存在しない。あくまでも人間の仮想的な解釈概念でしかない。ここで、コイルを採り挙げてアンペアの法則の意味を考えてみよう。何故コイルかと言えば、コイルの外側out side の部分には磁界が無い。もしアンペアの法則が正しいなら、コイルの周りには外側であろうと内側であろうと、コイル導体に対して、同じく磁界が無ければならない筈だ。もし電流が導体の中を流れるものであり、その電流が空間的な遠隔点に磁界を作りだす超能力を持つと仮定できるなら、当然コイルの外側にも磁界が出来なければならない筈だ。コイルの外側に磁界が出来ない訳を誰も説明できないのである。誰もが説明できない訳は磁束も電流も人間が仮想的に解釈法として考えだした仮想的物理量でしかないからである。自然界の電気現象には、電流も磁束も無いのだ。だからコイルの外側に磁界が何故出来ないかを説明できないのだ。結局、導体の周りにはエネルギーが流れているので、そのエネルギー流と磁石のコンパスのエネルギー流との間で相互作用が生じて、エネルギー流間の近接作用力による力の働きが観測されるのである。その磁石にかかる力を電気現象では電流と磁界と言う捉え方で認識している。アンペアの周回積分則が直線導体ではなんとなく解釈に便利であるかも知れないが、少し変わったコイル導体などになると、説明に矛盾が生じる。説明が出来ないのは、元々の電磁気量の概念に矛盾があるからなのである。このような説明は、なかなか科学論としては異端の論に成り、認められないのが実情だ。普通は科学論は数式に依り如何にも原理的であるが如き解説でなされ、こんな科学概念の否定という論法は殆ど科学論には成らないのである。しかし自然の本質を見極めるには、数学的抽象論など余り役立つとは思わない。例えば、アンペアの法則でも、その式が表す意味を実際に計ろうとしても決して実験的に計れるものではない。空間の磁界を測定するには、例えば磁針を空間に持ち込めば、その測定対象の磁界を乱してしまうから、測定値が狂うのである。光の空間伝播量の瞬時値が計れないのと同じで、磁界の数量が計れる訳が無いのである。だからアンペアの法則も、電気回路現象を理解する一つの方策として、こんな数式で解釈したら良いだろう位の事なのである。アンペアの法則が自然現象の本質だ等と考えるのは間違っている。磁界などを計っているのではなく、エネルギーの光速度流のあるいは近光速度流間の相互作用を捉えて技術的に測定方法を確立したという事である。あくまでも磁界や磁束と言う仮想概念が本当に実在する物理量である訳ではない。ここまでの話で、電流が本当は流れる等と考える事が物理的に矛盾していると確信したのが、昭和62年8月である。電流を切り捨てる。自分が長い間回路解析で最大に信じていた電流を、その基本概念を切り捨てなければならない羽目に成ったのだ。自分を斬ると同じ踏み絵であった。『電荷』否定の実験的検証がその電流切り捨てを後押しした。その時点まで、『電荷』の概念が怪しいと睨んで、考え続けていた。『電荷』が怪しく、その否定を確信した実験が昭和61年秋の、高電圧電界内・コンデンサ内の磁場検証実験である。昭和62年電気学会全国大会、仙台市、東北大学での発表『静電界は磁界を伴う』-この実験事実に基づく電磁界の本質ーである。この検証実験に取り組むまでに、考えた事がある。それは地磁気の空間での意味が、それに対して関係する電界とはどのようなものかと言う疑問であった。有名な物理学者・P.A.M.ディラックが唱えたモノポールはその時点で棄却した。その地磁気の変動に対して、空間に直線導体を張ったら、どんな電圧が現れるかと考えた。しかしその電圧は検出する事は出来ない筈と知った。そんな磁界と電界の関係を色々探る思考を重ねた。10月初めに、長岡技術科学大学で、初代学長川上正光先生の講演があった。その時ある方に『電荷』は本当にあるだろうか?と言うような話をした。その方は実験で証明しなければという。すぐ帰って考えたのが高電圧実験での磁界検出であった。十月末の、空が大嵐の日に、高電圧の値を上げて行くと、ロゴウスキー電極間にぶら下げておいた検出用磁針が静かに指示方向を変えるではないか。全くの驚きであったと同時に、しめたと予測の手掛かりに未来が見えた。この自然の神秘を探り出されるのを天が嫌って朝から雷の大嵐に成っていたのかと勘繰りたくなった。自然の神秘を探り当てたと驚愕を感じた。科学技術から掛け離れた物理学の根本の否定と言う、理解されない混乱の発表だった筈だ。『電荷』否定の道のりは、変人・狂人の社会的『逸脱者』と非難されながら、対処する術を知らなかった。それこそ法の範囲を超えざるを得ない道のりである。『電荷』否定の実験の意味を新世界への扉ーコンデンサの磁界ーとして記した。

一言追記しておきたい 静電界中における磁界検出実験に対しては、誰にも理解できない事であったと思う。昭和62年長岡技術科学大学に逃げてから、ある教授にゲラ刷りを渡した《高専の方ですか?と言われた、居所の無い身である》や電気系の教授にも話したが相手にされなかった。電気系の教授には、『ホール素子』で計ってみたらどうですかと、頓珍漢な返答が返って来た。空気中の光に近いエネルギー流を『ホール素子』で計れると考える話では、議論に成らない。ついでに記す。私は分限免職の処分を受けたらしい。その処分書を見たのは、根本原因が舞鶴鎮守府の軍歴表にある事を知って相当経ってから(平成10年頃?)である。長岡技術科学大学の事務局・庶務課に出向いて、職員から手渡されて初めて知った。その中を見ると、昭和63年10月7日?頃、長岡技科大で私に事情聴取をして、処分を決めたという事に成っている。しかしその日は、こっそり無届で、びわ湖湖畔での電磁界研究会で丁度筆者が大量の『写真データ』公開した学会発表の日であった。昭和63年9月技科大から去ったのは、6,7月頃学内の図書館に調べ物をしようと、入館の図書カードで受け付けられず、身分がない事を知らされた。系長に問いただしたら、そんなカードを使ってはならないと、いとも簡単に言われた。じゃ何を使えと言うのか?大学に居てはいけないのだと理解した。

クーロンの法則 物理学で『電荷』が基本概念として、何故社会的にこれ程広く認知されて来たか。筆者が『電荷』否定を唱える事の意味は、自然科学理論の根幹である社会的合意の常識に挑戦する事だったのだ、と改めて怖ろしさを思う。考えてみると、自分のこれと思ったら我慢できない無鉄砲さの社会的には幼稚さと非難される性格が原因には成っていると思う。そんな先行きを考えない行動は今でも非難される事である。自己分析すれば、科学理論に挑戦する事は、社会の反逆者的な批判と無視の憂き目にあう覚悟を持たなければならなかったのだ。しかしそんな思慮深さを持ち合わせていない幼稚さから、今の自分の世界に辿り着いたかと。と同時に、何故人はここまで、『電荷』を世界の基礎として信じて来られたのかと不思議でたまらない。『電荷』が物理学理論でその構成原理として必要とした意味はクーロンの法則である。『電荷』と同時に、否定すべき原因はクーロンの法則にある。距離の長さが法則の『力』の値を決めるという科学的認識に疑問を抱かない、人間の非論理性を考えないでは済まされない問題なのだ。クーロンの法則を斬る に『電荷』否定の論証の為の記事を記した。距離が数学的法則表現の変数である代表例がニュートンの万有引力則である。それもクーロンの法則と同じ意味を持っている。

導体内の自由電子と外部磁界の矛盾 電流概念の原因たる自由電子を取上げてみよう。ここからは時間を置いて記す。金属結晶と自由電子―怒りの科学論―

クーロンの法則を斬る

(2022/02/23)追記。この記事について、気掛かりが生じた。『クーロンの法則』と言えば無意識に『電荷』に関する法則と思う。その『電荷』の単位がクーロン[C]であるから。しかし、一寸勘違いしていたのではないかと心配になった。フランス人のクーロン(Charles Augustine De Coulomb  1736-1806) は、その当時それ程『電荷』概念が科学基礎物理量と認識されては居なかったのではないかと思った。

実は、「電圧概念の起源」で何時頃から『電圧』と言う用語が使われたかと検索した。ボルタの電池当たりかと、その定義がどの様に成されたかを知りたかった。その関連記事の、電気の歴史年表と言う記事を見た。そこに、クーロンは磁石には二つの異なった極があり、同じ極は反発しあい、異なる極は引合う。力は距離の2乗に反比例する。

と言う記事を見た。この記事で、クーロンは『電荷』などの事ではなく、磁気に関する力について解釈を示したのではないかと、少し安堵した。おそらく当時は未だ『電荷』等それほど意識されてはいなかった筈だ。憶測であるが、多分1900年以降に、クーロンのお名前との関係で、『電荷』の単位「クーロン [C]」から何時の間にか、物理学理論の教科書で『電荷』に関するクーロンが唱えた法則として誤解をした解釈を広めたのではなかろうか考えた。

(2020/5/4)追記。力の概念と電気物理 (2019/5/21) なぜ今まで「クーロン力」の力の物理的概念矛盾に気付かなかったのだろうか?科学パラダイムの恐ろしさを覚える。

物理学理論の中で、電気磁気学がその主要な基礎をなしている。なかでも『電荷』に基づく基本法則が『クーロンの法則』である。電波伝播の基礎方程式を理解するには、マックスウエルの電磁場方程式で解釈するのが普通である。そこでも空間の変位電流と言う『電荷』概念に基づく解釈が求められる。ここで取り上げたクーロンの法則を斬るの標題は『電荷』の実在を否定する立場から、その基本法則と言われる『クーロンの法則』を取上げて、その曖昧さや論理的矛盾を論じて、電気磁気学の根本から、その解釈の誤った全体像を明らかにしようとするものである。(要点として未来の方向性を示せば、次のようになろう)現行教育では、電磁気学のまとめで、マックスウエルの電磁場方程式が重要な学習の要点に成っている。しかし、光の放射現象で、「配光曲線」等の空間分布特性は『エネルギー』の放射現象として、そのまま『電磁エネルギー放射特性』と解釈できる。エネルギーの空間伝播現象が理解できれば、難しそうに見える電磁場方程式など無用の長物である。元もと、電磁波は電界・磁界などの横波解釈(シュレーディンガー波動方程式の正弦波解釈)は誤った仮想概念でしかなく、すべてエネルギーの進行性の縦波で解釈すべきである。だから、振動数と言う意味も横波解釈の仮想的な概念に基づいて定義されたものである。光エネルギーの光速度伝播は「ポインティングベクトル」で理解できよう。電気照明工学の光照射論を学習すれば、電磁エネルギーの縦波伝播の意味が理解できる筈である。照明と配光曲線が参考になればと思う。私がここに述べた事の論拠として、新世界への扉ーコンデンサの磁界ーの記事を上げておこう。

クーロンの法則『電荷』が素粒子理論等の現代物理学の最先端の研究でも、その概念の曖昧さにもかかわらず、ただ存在が暗黙の事実として認められている。クーロンの法則 は 1785年に、 Coulomb’s law として、フランスの物理学者 Charles de Coulomb によって唱えられた法則のようである。上にその法則の意味を数式で示した。電荷間に生まれる力関係を表現したものである。空間の誘電率と二つの電荷間の距離 r の二乗に反比例すると言う意味で解釈される。『電荷』そのものが、質量に付帯する物なのか、独立に存在しうるものなのかさえ明確に出来ないのである。その存在が不明確でありながら、電荷間に遠隔作用力が働くと言うのである。電荷の間の空間の状況がどの様であるかを明確にしなくても、距離の逆2乗則で力の大きさが決まると言うのである。ここでの『遠隔作用力』とは、二つの物の間の空間の関係はせいぜい誘電率で関係づけて、単に離れた物同士の間の距離だけに因る、遠隔的に作用し合う力の意味で捉える。『電荷』が空間に存在した時、その電荷の周辺の状況をどのように捉えるかが極めて曖昧である。電荷は空間的に独立して空間体積を占める物かと尋ねても答えられないのである。大きさが無い物では、その実在性は主張出来ない筈である。存在は空間の体積を占める。『負電荷』が電子に付帯するなら、電子の質量との空間的付帯状況からの関わりを説明しなければならない筈である。以上の空間に存在する『電荷』の状況を考えるには、一つの図面を採り上げて考えたい。電荷とクーロン力

この図は以前『電荷』と言う虚像で取り上げたものとほとんど同じである。先ず空間に電荷Q[C]が有るとしよう。その空間の誘電率がεとする。電気磁気学では電荷から四方に電気力線が放射されていると解釈される。基本的な問題として、空間に電気力線が有れば、その力線が持つ意味はエネルギーを伴うと解釈すべきである。その空間のエネルギー密度を w(r) として図に記した。前に述べた『遠隔作用力』はエネルギーの存在する空間なら、その空間のエネルギーとの関わりから、『近接作用力』と解釈すべき物になる筈である。その意味で、『電気磁気学基礎論』が空間のエネルギーの存在をどのように解釈すべきかが問われている。(2016/05/09)上の図の数式が理論として考えるのに重要な共通理解の基本と看做される。しかしそんな式で表されるような数量を確認する方法など無いのである。理論は数式で書き表すと如何にも真理であるかの如くに強制的に信じる事を要求する。殆ど当てに成らない数式なのであるが、理屈上論理的であるが如き形式論に成っているのだ。実際クーロン力の数量など計れない現実である(追記)。それが『電荷』そのものの存在性、実在性をはっきりさせる基本論点になる。クーロン力は原子構造論の基本的拠り所であるにもかかわらず、その論理性が問われている。2011.03.11 の原発事故がその物理学理論の根底をも揺さぶる事になったと考える。

物理学理論の論拠である『電子像』を問う。(電子の空間的実在性の真偽をただして) 何点かに分けて考えてみたい。①『点電荷』の寸法と意味。 ②『電荷』は中和するか。 ③『電荷』と雷の関係の矛盾。 ④原子構造論の周回電子像の矛盾。 ⑤『電荷』金属遮蔽と磁界矛盾(この内容は、クーロンの法則よりも『電流と磁場』の観点となるので、別に投稿する)などの観点から考えてみたい。

①『点電荷』の寸法と意味を理解できるか? クーロンの法則の解釈に、『点電荷』と言う用語が使われる。前出の図の電荷Q[C]は点電荷と言う。その大きさはどの程度と認識するか。空間的存在を理解するには、その大きさが欠かせない。元もと人間が大きさを捉えるには、目で見える大きさの範囲が基になる。しかし、原子や光子の話になるとその基準は役に立たない。空間寸法も『相対認識』の量である。蚤が見る世界と人が見る世界の違いや、太陽系外から見る世界と顕微鏡を覗いた世界とは異なる。『点電荷』の点がどの程度の大きさと理解すれば良いかは抽象的概念と具象的概念との違いに関係すると言う意味で、考え方を明らかにしておく必要があろう。『点電荷』と言う、その点の大きさ定義しないで論じる事は、科学論の論理性を無視した無謀な科学論になる。何故『点』に拘るかは『電荷』の曖昧さを質すに大切な論点になるからである。『電荷』の最小基本量は幾らか?長さにも大きさの最小基本量は無い。何処までも小さくなる。だから『電荷』にも基本量は無くてもかまわないと言えるかという問題である。長さは実在性を測る物差しである。『電荷』を測る物差しが有るかと言う問いである。『電荷』は存在しないから決して測定できない。ましてやクーロン力を測れる筈もない。以上『点電荷』から自分勝手な論法で、『電荷』概念の曖昧さを質してみた。数式無しの言葉での反論を期待したい。素粒子論の最先端の研究者に聞けば、きっとそれは「波のような物」であるから、もっと勉強をしてから考えなさい。と言うであろう。この問題を『電子像』に関係づけて、まとめてみた。電子概念と仮想像図の仮想電子像は、教科書的な意味に近い電子の像を考えて表現した。電荷と質量の分布をどう表現するかも困難である。その電子が青い外周線で、その影響する範囲がどこまでかも分からないが、その領域も記してみた。それは電界(これも存在しないが)と言う領域の話に繋がる。

②『電荷』は中和するか? プラスとマイナスの電荷が合体したら、その合体物は『電荷』の無い電気的中性体となるか?と言う疑問への物理的解答が欲しい。自然科学の研究は、新しい発見によって新たな発展を促すものであろう。しかし、過去の知見、特に基礎概念など、を全く否定するような科学研究は殆ど受け入れられないのが通例である。それは今までの研究者の功績を否定することに繋がるから。科学研究集団は、その過去の成果を互いに賞賛することにより、より集団的力の強化を経済的利益の裏付けの為に望む本質的特質を備えているから。だから、『電荷』を否定する論理は学術研究集団にとってはとても邪魔なものとなる。一般に、科学的発見は過去の知見を否定することなく、新しい解釈を積み重ねる手法が主流となり、古い法則もそのまま温存しながら、差し障りなく新しい研究分野に集団化するものとなる。『電荷』など有ろうが無かろうが、そんな利益が得られない事柄に関わる暇も考える意識も無いのが、最先端の科学研究者の実情である。理科教育が子供に為になるとか、役立たないとか、嘘であるとか、そんな事を考えるより、勢力が拡大することが当面の目的である。

誰かが『電荷』など存在しないと言わなければ、科学理論の本当の意味が社会に認識されない。怪しい(曖昧と言う意味で)研究に多額の財政負担の負荷が掛けられる事になる。『真理』や「平和」は実現するのがとても難しい。『電荷』にはプラスとマイナスが有る事になっている。それでは、プラスとマイナスの電荷の空間的存在形態の違いを明確に定義づける必要があろう。当然であるが、専門家(特に素粒子研究者で、プラスとマイナスの電荷の存在を肯定する人)は、決してその違いがどの様であるかは論じないし、答えようとしない。専門的研究者に属さない自分のような者が言うのは気が引けるが、素人の論理で『電荷』のプラスとマイナスの意味を探ってみた。電荷が中和する?『電荷』にプラスとマイナスが有ると言うが、その実体は何かが問われている。上にプラスとマイナスの電荷が合体したら、電気的に中和して、電荷が無くなると考えたい。電荷が無くなると言う事は、自然界には長い間で電荷の存在が消滅する筈と思う。上の(1)で、勝手な想像をしてみたが、電荷が消滅する説明にはならない。(2)の電気回路の例題が一番『電荷』のプラスとマイナスの意味を説明していると思う。ー投稿途中でIT遮断されるため、中断するので途中公開するーこの電気回路で、ダイオードで整流してコンデンサを充電したとする。電気理論によれば、コンデンサにはプラスとマイナスの電荷が蓄えられる事になっている。電源電圧の最大値と同じ電圧までコンデンサの電圧が充電される。コンデンサの容量をC[F(ファラッド)]とすれば、貯蔵される電荷量はQ=C・V_m_[C(クーロン)] となる。ただし電源電圧ピーク値 V_m_[V(ボルト)] である。コンデンサの上下の電極表面にそれぞれプラスとマイナスの『電荷』が対極的の貯蔵されると解釈される。そこで電源側のスイッチを開く(OFF)。次にランプ負荷側のスイッチを閉じる(ON)。さて、コンデンサに蓄えられた『電荷』はどのような事になるだろうか?私自身が、半導体の回路に少しは詳しい専門家らしい真似事をしていた。しかしこんな単純な回路で『電荷』の意味を考えた事は無い。コンデンサの電荷がランプの中で合体して、燃え上がる為、発光放射現象を引き起すとでも解釈すれば良いのだろうか?こんな電気の物理現象は、「理科教育」のとても良い例題になると思う。『電荷』の本質の理解と『エネルギー』の深い意味の理解の為に。ランプで起こる現象は、電気技術的な解釈では、ランプがエネルギー変換装置として、コンデンサの貯蔵エネルギーを空間に『熱』と『光』として解き放す放射現象の役目をしているのである。コンデンサの『電荷』のプラスとマイナスがためられて、その電荷が中和したからランプからエネルギー放射が起きたなどと言う理論は全く理解できない事である。『電荷』などの役目は破棄すべきだ。電荷中和問題で、図の(2)電荷はどこに消えるか?でダイオードの整流動作の意味が分からなくなった。ひとつ後の考察材料として、挙げておこう。ダイオードの電荷分離作用先日ダイオードの動作原理を検索で確認した。私が、工業高校で初めて担当した科目が電気科の『電子工学』であった。当時は、未だ教科書は『真空管』回路が主であった。ダイオードやトランジスタは参考程度の走りであったように記憶している。しかし、フェルミレベルや伝導帯、空乏層あるいは禁制帯などの専門用語を何とか理解して教えて来た。しかし、今になって検索しても、昭和39年当時と同じ説明しかなかった。当時教えていた事は今自分が分かっていない事を伝えていただけであると反省せざるを得ない。右図で、トランス2次側には、何処にも『電荷』のプラス、マイナスが初めからは存在しない。しかし、ダイオードを通して電源電圧を整流するとコンデンサにはプラスとマイナスの『電荷』が分離されて蓄電されると言う解釈が常識になっている。こんな当たり前の単純な電気回路でも、私には理解するに、難しい意味を含んでいるように見える。ここでは理解が十分でない私の事を挙げておき、後ほどの課題としておきたい。(2018/11/25)追記。5年後の現在、このダイオードとコンデンサと電荷に関する認識が明確になったと思う。それはダイオードの機能とコンデンサとエネルギーと電荷(2017/08/31)に纏まったかと思う。課題の解決として。

③『電荷』解釈の雷矛盾 雷は天候が荒れる時に起こる。雷雲が生じ、そこから稲妻の発光現象として見られる。ベンジャミン フランクリンが凧を揚げて電気現象である事を突き止めたと伝説に成っているようだ。荒天に凧上げ、更にビリビリと電気を感じて確かめたと言う話は信じられない。感電死間違いない。雷は電気現象として、高電圧工学の調査・研究対象となっている。自然現象は殆どその原因を『電荷』にその理論的論拠を求めている。それ程『電荷』と言う概念は便利である。余りの便利さから、『電荷』の本質を探ろうとはしないで過ごして来た。学術・学理・学問は高尚で、深遠である為、簡単に素人が取り付けない分野であると見られている。雷の正体で、雷は水蒸気の熱エネルギーの空間放出量の限界に起きる現象であると唱えた。まさか、水蒸気の話では、高尚な学術・学理の問題とは言えなかろう。雷が電気現象であると言うのが現在の学術論であろう。しかし、雷の姿はその「稲妻」の発光現象に在り、それに物理的解釈を下すことが重要であろう。『電荷』がどのような物理的論理で、光変換現象を引き起すかの説明であろう。私も衝撃電圧の実験をしていたが、『電荷』の実在性に疑問を持つような事は無かった。「在る」のが当然という固定観念に囚われていたからである。理論の根底に疑問を持つと、どこまでもその究極に迫る事になる。自然の仕組みが少し見えて来ると、感覚で判断しても余り誤った結論に惑わされる危険はなくなるように思う。高尚な数学的論理式が正しい自然感に導く事は期待出来なかろう。『電荷』の意味を考えるのに、何が光変換するかの図を挙げておく。雷と電荷

何度も取り上げたような題材で少し申し訳ない。冬のドアノブの火花や雷は「電気現象」と解釈されている。静電気と言う『電荷』問題でもある。しかしその本質を噛み砕いてみると、以外に別の観方ができるようである。雷の現象を調べるのが高電圧の発生装置で、衝撃電圧発生回路である。その簡略図が①の平板ギャップ放電回路と見做せる。実際は多数のコンデンサとスイッチSの組み合わせの並列・直列切り替えにより、瞬時に高電圧を発生する回路構成に工夫されている。等価的には図の①で解釈できよう。スイッチSオンで、コンデンサの貯蔵エネルギーが瞬時にギャップに供給される。そのエネルギー量がギャップで保持できない時放電と言われる火花放射現象を引き起す。それが「アーク放電」と名付けられる。前段の電荷中和問題での(2)のランプ発光とエネルギー放射現象としてみれば同じものであるが、状況が違う様に見えるだけである。この場合も、コンデンサの電荷がギャップに供給されて、プラスとマイナスの電荷がギャップ空間で、合体して電荷中和を生じ、光に変換したと解釈できるだろうか。電荷の合体中和が光放射現象を引き起すなどの理屈は全く理解不可能である。電気回路は電荷と電流 i で解釈されるが、電荷も電流も物理原理としては教科書的、教育現場用『仮想概念』でしかない。②の雷の『稲妻』火花発光現象も本質的には①のギャップ放電と同じである。ただ違いは、コンデンサのようなエネルギー源が無い。即ち電気的な閉ループが構成されていない。エネルギーが雷雲と地上との間の空間に貯蔵されていたものが、発光の引き金となる状況が生じて、一気にエネルギー放射現象になる結果である。火花放電と言う状況は空間のエネルギー貯蔵限界により引き起こされるもので、電気的な表現によれば、空間の『電界強度』が30kV/cm と看做されている。空間の誘電率 ε[F/m] =1/(36π)×10^-9^[F/m] とすれば、空間の限界エネルギー密度はw≒40[J/㎥] と計算される(初めに挙げた図の 電荷の意味とクーロン力? のw(r)の計算式を参照)。ここで雷と電荷解釈の疑問を採り上げる。②の拡大で③に示す。クーロン力は同じ電荷間には反発力として働く。だから『電子』などの負電荷同士が集中的に集まる事は論理的に矛盾した法則上の解釈である。同じ電荷同士は反発し、異種電荷同士が合体力を生みだす。と言うのが『クーロンの法則』である。空間で光放射現象に発展するには、相当のエネルギー貯蔵がされなければならない筈である。電荷が空間に『クーロン力』に逆らって、局所化するとは論理の矛盾である。

④原子構造論と周回電子像 物心がついた頃から、原子構造はこのようであると教えられて来た。それは誰でも知っている構造である。原子の中心に原子核が有り、その周りを電子が周回運動していると。?原子構造?

何故、このような原子構造であると決められたのだろうか?ラザフォード(Ernest Rutherford (1871-1937)  ノーベル化学賞受賞者) が1911年頃に、原子核の構造についての考えを提唱した。原子の中心に核として、陽子と中性子が有ると示唆した。しかし、電子が周回運動をしているとの解釈は、未だ定着していないようだ。すでに一般的には、電子で原子が満たされているとは考えられていたのであろう。誰が周回運動する電子像の解釈を提唱したのかは分からない。クーロンの法則が、すでに1785年に唱えられていたとすれば、物質が電子で構成されていると言う解釈はすでに科学的常識と成っていたのであろう。原子核の様子が少しずつ明らかになり、誰とはなしに、周回電子論が常識化して来たのであろう。結局、周回軌道電子像は現在も、量子論初め、全ての原子に関わる理論構築の基礎をなしている。周回軌道電子の運動エネルギーの増減で、原子放射光のスペクトル解釈をしている。

上に述べた事を、原子の数例について考えを纏めたので、次に示す。

原子構造の例

原子質量単位

(2013/2/4)の疑問追記は私の間違いでしたので削除しました。ただ、金属原子などにも、1mol のアボガドロ数との関係が成り立つ意味が理解できない。

1月20日は、大学入学試験が有った。自分が上に述べた事を考えると、これからの「理科教育」はどのようにあるべきかと、教科書との乖離に悩みも深くなる。先日(19日)も、NHKの教育番組で、MITの『電荷』に関する講義内容が放送されていた。その講義を聞いて、「エボナイト棒の摩擦」が電荷の実験的検証の題材に成っている。確かに摩擦をすれば、仕事に対するエネルギーがエボナイト棒に蓄えられると解釈できる。そのエネルギーは普通は『熱エネルギー』である。エボナイト棒の周辺空間には確かにその影響が現れている。そのエボナイト棒が他の物を引き付けるからと言って、それが『電荷』が原因であると断定できない筈である。確かに『エネルギー』もその空間的状況では、磁場のN極とS極のように、その回転流方向性として如何にも2極性を示す。だから、『電荷』もプラスとマイナスの2極性に見えるのであろう。その物を引きつけるからと言って、それが『電荷』と言う確認は出来ないであろう。『電荷』の空間的姿の認識も出来ないし、観察もできないのだから。熱エネルギーも電磁エネルギーも『エネルギー』と言う物理量から解釈すれば、同じものである。今までの物理学と言う世界は『電荷』の存在を基礎概念として自然科学の理論を組み立てている。本当に『電荷』の存在を未来の自然科学の『真理』として子供達に教えて行くのだろうか。

『共有結合』 原子構造で、その原子間の結合力・仕組みの解釈の合理性の問題が有ろう。その基本は周回電子が担っているとなっている。化学物質の結合手について、高分子結合まで『イオン結合』や『共有結合』など原子外殻に存在する電子がその役目を負わされている。その殆どは原子の外殻の負の電荷同士の関係で説明されている。もし、クーロンの電荷間の法則の力を自然界の『真理』とするのであれば、原子結合の論理性の矛盾を上げなければならない。クーロン排力の強力な空間領域でありながら、その影響は無視できると言はんばかりに、論理の矛盾を抱えた解釈に成っている。原子同士の強力な結合を実現する解釈法は原子表面の磁力以外は無かろうと考えた。その視点で『ダイヤモンド結晶』について考えた。炭素結合の秘め事

『電荷』という虚像

この世界に『電荷』は決して存在しない

(2012/08/03) 追記。以下の記事に対して、現在の「素粒子像」を、『電荷概念』無しで纏めたので追記しておく。素粒子ーその実像ー

私が科学の全世界を相手に挑戦することに成った原点は『電荷』の実像を問う事であった。物理学に関する『問答』の始まりであった。それは同時に自分自身との戦いを始める事であった。電気磁気学という物理学の中心的基盤がその電荷に論拠を置いて構築されている。その根源的科学常識を疑う言説は、到底科学の世界に受け入れられる筈はなかった。それは『あいつはとうとう狂った』というレッテルを貼られる事でもあった。電気技術分野への研究意欲と自信は大きかった。しかし、電荷否定への歩みは自分自身を、その知識をすべて破棄しなければ、新たな道を歩む自分を見出せない知的破壊の闇に突き落とされる事でもあった。2011年3月11日の東日本大震災で、日本物理学会第66回年次大会も中止になった。新潟市のホテル宿泊予約も全て取り消しという誠に大きな損害を関係者にお掛けする結果になった。今日はこの4月、桜が咲き、新入学の初々しい顔が集うこの時期に、挑戦の原点である『電荷とは何か』を取り上げるに相応しいと思う。電荷の存在を否定する事は『原子構造論』で原子核の周りを電子が回転する外殻電子軌道論さえ否定することである。プラス電荷の『陽子』とマイナス電荷の『電子』が電気的なクーロン力で引きあう釣り合い論も否定しなければならないのである。営々と築き上げてきた歴史的原子構造論と言われようが、そんな物は何の役にも立たないのである。理論屋が理論の砦に閉じこもる為の城壁みたいな役にだけ役立つ代物である。この『電荷』概念を論じるには、何故『電荷』を必要と考えたかを振り返って見なければなるまい。それは摩擦に因る吸引力の謎解きの必要性もあっただろう。力の原因を『電荷』に求めた結果と観る。そこで、クーロンの法則を斬る (2013/01/06)で記事にした。

電荷その物を空間の実像としてどんな風に描けますか? 電子に付随する『電荷』という物でなく、電荷その物の実像を尋ねるのである。同様に、陽子に付随するプラス電荷という意味で無く、プラス電荷その物の実像を尋ねるのである。この度の大震災で、空恐ろしい事態を引き起した。安全神話の原発破壊事件。その放射性物質拡散が科学技術の未熟さを露呈した。専門家という虚像が崩壊したと私には見えた。素粒子論もその怪しさの一端にある。原子核崩壊という現象には、正のβ崩壊というのもある。原子核の『陽子』が『中性子』に変換し、その時『陽電子』とニュートリノが放射されると言うのである。それもβ崩壊の放射能(エネルギーの放出)を出すと言う。陽子は中性子と陽電子がその構成要素のように見える。その『陽電子』はプラスの電荷を身にまとった(?)電子という物らしい。その電子にまとわり付いた『プラスの電荷』そのものの空間に実在する実像が「どんな物であるか?」を問い質しているのである。『電荷』の実在性を唱えるなら、その物の実像を提示しなければならないのである。それが科学者の務めであろう。特に素粒子論の研究者は、その電荷の実像を示す努力も無しに、高尚な理論を掲げることは、科学の世界に混乱を引き起すだけであると考える。今回の『福島第1原子力発電所事故』に対応する、現場の技術作業者の過酷な業務に対して、遠くに離れた『原子力推進者集団』の責任者が的確な指示も論理性も示し得ない現実を目の当たりにして、科学理論の虚飾性を強く印象付けたと思った。今強く思う事、それは『電荷』概念の虚飾性に改めて光を当て、その解剖が必要だと思う。『電荷』という物理量が存在するなら、それこそ世界を構成する『素粒子』に位置付けなければならない筈である。電子以上に『電荷』の存在を基本にしなければならない。それならば、『プラスの電荷』と『マイナスの電荷』とがそれぞれ独立した実在性を示す筈であるから、その空間的違いが如何なる物かを示さなければならない筈である。そんな電荷が存在する訳がなかろう。だから科学論が嘘で作られていると言う事に成る。

電荷は空間の『電気力線』概念でその特質を表現する。電荷だけで電気現象を論じることはない。電荷概念を論理に取り上げる時は、必ずその担い手である『質量』を必要とする。陽電子や陽子あるいは電子である。その『質量』という物理概念に於いて電荷が論じられる。それは取りも直さず、電荷の実在性を唱える主体的根拠を主張できない事を物語ると言えよう。私が電子の電荷概念に疑念を抱いた最初の意味を記しておきたい。電子あるいは『電荷』を表現する時、その特質は『電気力線』に拠って表現される。電子は負の電荷を身にまとっていると解釈して、プラスの電荷との間に『電気力線』という線束が生じ、その線に拠ってプラスとマイナスが引きあう引力を生みだすと説明する。それならば、電子が単独に空間に存在する時、その電気力線はどのように表現されるかという事が問題になる。それを左の図のように、全空間に放射状に力線が張り巡らされていると考えれば良いのだろうか。実際はそんな物は無い訳であるから、上図は嘘である。しかし、教科書ではそれを必要とする訳であるから、その矛盾を説き明かすための方策として、一つの表現図案を考えたのである。これが基に成って『問答』が始るのである。それでは、その電子が運動すると、その力線はどのように変化するかという問いである。電荷が移動すれば、電気力線も変形する筈である。これは、『電荷』や『電気力線』が実在するという論理性の思考過程で考えることであり、どのように考えるかは無限に考え方があろう。運動と電磁気の関係は『光の相対速度』を考えなければならない問題であり、基本的思考の立脚点を明確にする必要がある。その為にアインシュタインの『特殊相対性理論』が詭弁論であるという結論を得るまでに長い時間を要した。その立脚点に立てば、光も日常の生活感覚上で何も不思議な点はなく、生活者の感覚で解釈できるのである。巷に『アインシュタインの崇拝的複雑怪奇なー相対性理論ー解説本』が溢れているが、そんな物は正しくない。話を戻す。電子が運動すれば、その影響は空間的に光速度以下で、必ず遅れるのである。無限速度であれば、電気力線も分布状態に変化は生じない。世界に『無限速度』の現象は無い。光の速度以下で、運動の影響が生じるから、力線の形状も変化すると解釈しなければならない。それも、教科書概念を踏襲するという範囲での話であり、実際はそんな物は無いのである。さて、それでは電子のような物の何か存在する実体が全くないと言うのかと問えば、そうではない。では何が有るかということである。存在するのは『エネルギー』一つである。力を生むのも空間に実在するエネルギーの諸現象である。上の右に示した、運動電子の電気力線は電子が運動するにつれやはり時間的遅れを伴いながら、変化する。電気力線が動けば、電磁気学のマックスウエル方程式が示すところの、電界と磁界の相互作用の解釈に繋がるのである。私が解釈する電磁界理論は『電界』とか『磁界』とかをそれぞれ別の物理量として捉えるのではなく、同一の『エネルギー』の一面的見方が『電界』『磁界』という概念で捉えられているに過ぎないと認識するものである。教科書に従えば、運動する電子が周辺空間に電気力線、磁力線を生む事に成る。電気力線の空間的変化が磁力線の発生と成るのであるから、マックスウエル方程式のままである。その電気力線や磁力線は空間にそのエネルギーを持つ事を教科書でも明確ではないが、電界磁界で捉えるエネルギーとして述べている。では電子が持つエネルギーは幾らと解釈すれば良いかという問題である。この点に関して『電子のエネルギー無限大の矛盾』について指摘したのがP.A.M.DIRACである(磁気モノポールは頂けない)。それは電荷概念そのものの矛盾が故の問題である。物理学の欠陥は『エネルギー』その実在性を認識していない事である。電子の周りの空間に存在するエネルギーをどう認識するかである。その時、電子の範囲は空間的に何処までと解釈するかの困難を伴うのである。エネルギーが存在すれば、それは何物が造り出したものかという極めて素朴で、単純な疑問である。そんな易しい捉え方が、市民の生活に根ざした科学認識に重要な事である。数式が無くても自然現象の本質を説得し、説明できなければ、それは真の科学ではなく、偽物らしく感じざるを得ないのである。

電荷と空間エネルギー 数式が無くても自然現象の本質を云々と言ったその裏で数式に頼る能力の無さを知る。数式の無意味さを説明するには数式を書かないと無理と言う自分への矛盾をご勘弁いただきたい。電荷に伴う空間のエネルギーと言う意味は何かを解剖してみる。ここで述べることは学校の『電気磁気学』と言う教科で、先生が教科書に従って教える時の内容を復習する様な意味で、先ず解説するのである。それが上の図である。+Q[C]の電荷が空間にあると、その周りには均等に電気力線が球状に放射されると解釈する。半径r[m]の球表面積4πr^2^とεで除する電気力線密度がその点p(r)の『電界強度のベクトルE(r)』だと言うのである。その単位は[V/m]で、1[m]当たりの空間電圧[V]になる。図に示すようにその式の電荷+Q[C]からどうして、単位[V]が出るかは単位換算をしなければならない。それをここに参考に載せる。電荷の単位クーロン[C]はエネルギー、ジュール[J]とファラッド[F]の平方根という奇妙な単位に成る。この表は大変便利だと自負している。電荷に拠る電気力線はそこにエネルギーが同時に存在する事を規定している。そのエネルギーはw(r)の密度で解釈される。このエネルギーは物理学で、電気磁気学で十分認識していないものである。エネルギーの担い手である質量を捉えようが無いから、物理学理論で取り入れると、電荷概念の矛盾を曝す困難に入り込むからであろうかと解釈する。コンデンサ内の電気エネルギー・電界エネルギーは空間媒質の分子誘電分極と言う解釈で説明されるが、点電荷周りの空間エネルギーについては中々分子分極とは言い難いから、エネルギーの存在は目をつむって無視しているのだろう。さてそのp(r)点に、一つの点電荷-q[C]を持ち込んだとする。すると有名な遠隔作用力の『クーロン引力』がたちどころに生じる。このクーロン力が電荷の概念の特徴を備えた大切な『基本法則』と言う事に成っている。そんなものも役に立たない法則ではあるが、教科書では最重要法則である。クーロン力のお陰で、ラザフォードの『原子構造論』が今もって物理学理論の『重層岩盤』と成っているのである。電子のマイナス電荷e=1.602×10^-19^[C]がクーロン力に逆らって、半径rが大きく成る事で電子の軌道エネルギーの増加を生み、量子力学論の光の放射原理の解釈に繋がって来るのである。その原子論では、原子核の陽子と軌道電子との力、万有引力とクーロン力の兼ね合いで論じられているが、その間に存在する『電界に拠る空間エネルギー』等は何の解釈の対象にもならないのである。要するに『エネルギー』は質量が無いとその存在を認識できないのが『物理学理論』である。当然であるが、電子その物も空間に存在すると仮定すれば、その周りには空間のエネルギーを身に纏っている筈である。なお、単位換算については少し纏めて、エネルギー[J(ジュール)]とJHFM単位系 に記してある。この辺で一応、この項は終わりとしておき『原子論』について改めて別の標題で論じる事にしたい。未だに『原子構造論』の記事を纏めていない。電子スピンの解釈そのものが、円環電流との相似概念で解釈されている事に、違和感を禁じ得ない。電子スピンとは?-その空間像ー にエネルギー流としての解釈を示した。原子構造の合理的な解釈は、外殻表面に分布した電子に代わる磁気スピンの繋ぎ手の像で捉えるべきであると考える。「電荷棄却の電子スピン像と原子模型」 日本物理学会講演概要集第64巻2号1分冊、p.18. (2009) に概要は記してある。電荷概念に依存した物理学基礎理論は、その曖昧さに耐えられない筈である。 『電子』とは?-物理学的「お化け概念。この「お化け概念」を改めて、電流計は何を計るか の末尾に述べた。その図をここにも示したい。電子とは何者か電子像

『電荷』概念否定の具体的例題 雷の正体。原子間結合に関する『共有結合』について、炭素結合の秘め事