等価回路変換定理の適用例

投稿日: 2017年6月24日 | 投稿者: yoshihirak

Yoshihira Kanzawa (金澤 喜平)名前が正しく翻訳されない訳は自分の存在を否定されているようだ。舞鶴鎮守府から帰還していないか?

何十年も専門家としての学術機関に所属することもできず、仕事も無く社会的繋がりなしのお恥ずかしい立場で過ごして来た。普通はそれぞれ専門の研究分野を極めるものであろう。今やっと電気現象の道らしきものが観えてはきたが。本当にどう処すれば人並みの生き甲斐を得られるかの方策も見つけられずに、能力の無さを曝け出して来た。どこかで、『以下余白』のお墨付きを頂いたまま、昭和39年の所属の不可解が観えて来ても人生をやり直す訳にも行かずに今日を過ごしている。昭和62年、63年の居場所もなく彷徨っていた諸行無常の重ね日がそのままに、逸脱者と罵られていた日々を思い出す。今日は少し電気工学の専門的内容で、一つ具体的例題を取上げてみよう。先行きにどんな結果が得られるかも確認せずに思い付くまま書きながら。昨年(2016)の如月の29日に等価回路変換の定理をここに発表した。この定理は余りにも単純な変換式であるため、どうしてこんな式が得られたかを自分でも不思議に思っている。しかしとても良い変換公式であると感心している。それに関連して、定抵抗回路の問題にも触れることができ、電気回路現象の奥深さにも刺激を受けた。今回はその『定抵抗回路』の問題に等価回路変換の定理を適用して、その具体例から定理の有効性を取上げてみたい。大学の講義では取り上げられないだろうが。

定抵抗回路例 去年初めて、定抵抗回路と言う面白い回路があることを知った。今回はやはり去年電気回路の中に隠れている意味を等価変換回路で見つけた。その回路変換の例に定抵抗回路を取上げてみたいと思った。先ずは定抵抗回路の意味を少し見方を変えて解釈した。

定抵抗回路と時定数 定抵抗回路の意味を時定数と言う回路概念から考えてみれば、分かり易い理由があった。上の回路例では二つの回路ブロックZ_1 とZ_2 が直列に繋がった回路である。単純にそれぞれの回路の電源電圧に対する電流の位相差が時定数に隠れている訳である。Z_1はT_1の時定数の分だけ位相が遅れる意味を含んでいる。Z_2はT_2の時定数によって電流が進む位相になる。遅れと進みの位相回路が直列に繋がれている訳だから、全体で周波数に関係なく電圧に対する位相差がゼロとなると言う意味が隠されている訳である。時定数と言う意味から解釈すれば、定抵抗回路の意味が分かり易くなる。ところが、回路時定数と言う概念の次元を考えると、そこにはまた不可解な意味も含まれているのである。

等価回路変換の定理と定抵抗回路 ここでR-L-Cの直列回路を定抵抗回路への等価的回路変換をする場合を例題にして、等価回路変換の定理の適用を試してみる。

定抵抗回路への等価回路変換 実際に適用を試みると、基本的に変換後の定抵抗回路の条件を満たすべき事からの制約があることに気付いた。元の直列インピーダンス回路を図のような(R)+(L)+(R)+(C) の元回路とした。(RL)回路と(RC)回路をそれぞれ等価変換して、並列回路の直列接続の定抵抗回路にする。等価回路変換の定理を適用して定抵抗回路の回路要素を算定すると、(変換要素値)のような変換式になる。同じ抵抗値であるべきR’が①と②のように異なる算定式になる。ここで一筋縄では解決しない問題だと初めて気付いた。この問題の解決策は一つある。ωT=1の条件を満たせば成り立つ。R’=2R 、L’=2Lおよび C’=C/2となる。

回路要素の条件 定抵抗回路に条件がある。その事から等価変換する元回路にもその条件の制約が掛る。少なくとも、元回路が純抵抗回路の条件を満たす必要があると気付いた。従って、どんな元回路でも定抵抗回路に変換できる訳ではない事だった。余りにも当然のことであった。

回路要素間の制約条件 定抵抗回路に要求される要素間の条件は上の通りだ。元回路に求められる条件は上の(2)式である。定抵抗回路は電源周波数に無関係に純抵抗R’と等価な回路である。この両回路間、元回路とその等価変換された定抵抗回路間には [T=T’]と言う関係が成り立っている。不思議だね。

例題 元回路のインピーダンスZ=R √{4+(ωT-(1/ωT))^2^} の直列回路をそれぞれ、R-L とC-Rの二つの回路ブロックで並列回路に等価変換すると定抵抗回路に変換される。そんな例題を取上げた。

定抵抗回路条件を満たす要素値の例題を選ぶに少し苦労した。しかも商用周波数の50Hzでの条件の為、無極性のコンデンサ容量が大きくなってしまった。抵抗値もR=21.22[Ω]と切れの悪い値だ。元回路も一応共振条件で、等価的には純抵抗となっている。R’ とC’を算出してください。時定数と共振現象はまた未知の迷路に入りそうだ。

地球は太陽が造った

投稿日: 2017年6月23日 | 投稿者: yoshihirak

酸素はどのように生まれたか。

水はどのように生まれたか。

塩はどのように生まれたか。

植物はいつ生まれたか。

海はどのように出来たか。

動物はどのように生まれたか。

太陽の光がなければ地球に何も生まれない。

太陽光で地球は大きくなった。

酸素がなければ水は生まれない。

酸素と水と塩と植物がなければ動物は育たない。

太陽光線で植物が繁茂し、土となり動物が溢れ地球が大きくなった。

地球の内部地下にはその歴史が積層構造を成して記録に留められている。

植物がなければ酸素も水も増えなかった。

海がなければ人間も動物も生まれなかった。

と地球のいっぱいの不思議にそんなことを考えた。

電流と哲学対話

投稿日: 2017年6月18日 | 投稿者: yoshihirak

これも科学論(市民の分かる) 科学論は科学者が組織する機関や学会の合意の共通認識の範囲に限られた基本原則を守った中での論議しか許されないのだろうか。電気工学の技術的感性に基づいた自然世界の観照を通して、身に付いた感覚から物理学理論を学習させてもらって来た。所謂専門的常識論に囚われずに自由に自然世界の実相を心に映して、自然との対話を積み重ねて来た。科学理論の中でもその最も基礎理論となる電気磁気学が電気工学技術論と近いことから取り組み易かったため、その内容を分析し、解剖することを通して多くの理論に矛盾の不整合性が存在すると考えざるを得ない事態に至ってしまった。初めはこんな事態になるとは考えていなかったことに戸惑いもある。科学常識からは異端の認識からの科学論は科学論とは言えないのだろうか。失礼ながら電気現象に少しは関わりを持って過ごした昔の過去がある。そんな者にも、数学的数式は使わなくても、日常の言葉だけでも電気現象の基本概念『電流』の意味位は解釈できる。毎日電気磁気学の高度な授業展開をなさっておられる専門家の皆さんは『電流』とは何か等とはお考えになられないのでしょうか。電流は流れずと主張する者からの科学論であるが。

電流と電子の関係 電流とは電子の逆の流れを言うと解説される。決して電気工学の専門家は深く電流の意味を追究しない。それは物理学の領分であるからなのか。しかし、物理学の中の電気磁気学の専門的教科書を開いても、そこには電流そのものの意味を追究する解説は殆ど無い。電線の中を電子が流れていると断定した専門的定義の基で解説が進められる。一方物理学理論の根本的概念を構成する電子には、素粒子論のレプトンとして質量(9.1091 ×10^-31^[kg]等)と電荷(1.602 ×10^-19^[C])から構成されていると認識されている。電流の概念では電荷の他に、特に質量の必要性に言及したその姿を解説する物理学論を見かけることは無い。電流の単位は電荷の時間微分で定義される。しかし電子には質量がある。その電子の流れに因る電流には電荷だけで良いのだが、何故か電子と言う物理学概念に従えば、質量も一緒に流れることになる。何故に電流が電荷の他に質量も伴う電子の逆流として解釈しなければならない概念として電気現象の根本的常識になっているのか。皆さんは少しも疑問を抱かないのでしょうか。

光速度との関係の不明確性 電気現象はほぼ光速度で伝播する。その速度に電子がどれ程素早い対応をする論理的根拠が示せるだろうか。例えば1kmの配電線に電源電圧を印加したとする。電子は導線の内部を流れると解釈されるようだ。単相交流回路として、二本の導線があり、負荷は何も繋がれていない無負荷の配線とする。負荷端で導線は繋がってはいないから完全に分離した二本の導線が平行に張られているだけである。その時導線内の電子に掛かる電界はどこからどのように掛けられるのか。電源側からただ電圧のそれぞれの(プラスとマイナスの)極をどこも繋がっていない二本の電線につないだだけである。なぜ電線の導体内部に電子に運動を起こすような電界が掛ると言うのだろうか。電力変換技術を通して身に付いた感覚からすれば、導体である電線内部には電界等発生する訳など有る筈が無いと言う認識が定着している。導体内部に電界は無いと。離れた電線に電圧を掛けると電子が電線の終端まで運動力学の質量に加速度を生じる原因が発生し、電子運動が起こり、電線全体に電圧分布が生じると言うのだろうか。この電気現象にはマイナスの電子だけで、プラスの電荷にお出まし頂く余地は無いように思う。電子に運動をさせる加速度の基である電界と言う電気概念はどのように掛けることになるのだろうか。平行の電線が何処ででもが繋がっていなくても、ほぼ光速度で電線間には無負荷終端まで『エネルギー』が伝送され、保有されるのだ。決して電子が『エネルギー』を運ぶ訳ではない。

初期の投稿記事を拾う。

  1. 放電現象と電荷・電流概念 (2010/08/02)
  2. 電流計は何を計るか (2010/11/10)
  3. 磁界・磁気概念の本質 (2010/11/16)
  4. エネルギー[J(ジュール)]とJHFM単位系 (2010/12/18)
  5. 電流は流れず (2010/12/22)
  6. ファラディ電磁誘導則・アンペア周回積分則の物理学的矛盾 (2011/01/30)
  7. 新世界への扉ーコンデンサの磁界ー (2011/02/20)
  8. 『電荷』と言う虚像 (2011/04/08)

光量子の波動関数形と作用

投稿日: 2017年5月30日 | 投稿者: yoshihirak

はじめに(過去と光量子像) 過去のファイルから光量子像を拾い出す。

光量子像 光は質量的な粒子ではない。横波の振動体ではない。曖昧な波動ではない。『エネルギー』の空間密度分布の光速度の縦波流である。

光量子と指数関数 雷様の光エネルギー放射現象の衝撃波形からの類推による導出波形関数が(1)式である。決して科学実験により証明は出来ない光量子像であろう。実験での証明が科学論の本質だと言われれば、この光量子像は科学論の範疇には入らないことになろう。自然現象に対する個人的『勘』に基づく提案でしかない。この式の導出過程などについては光とは何か?-光量子像ーに述べてある。

求められる人間像に程遠い未熟の人間のまま、科学常識から程遠い非常識の自然感覚から求める世界を彷徨う。見えない物を見たような嘘を言うと非難されるような光量子概念の提案をして来た。目で見えない物を見たとは言えない。しかし、心・感性で観ることもあろう。物理学理論のある時は「粒子性」でまた或る時は『波動性』で同じ現象を解釈し分ける。「粒子性」という場合の粒子とは質量の塊のような物を言うのか、そこに電荷という得体の知れない物を纏った電子のような粒子を念頭に描くのか、なかなか素人には理解できない。時には電子を雲のような捉えどころのない波動のようなものと言うようだ。そんな不明確な捉え方に満足出来ずに、2001年『プランク定数の次元と実在概念』を未熟な内容のまま発表した。その基には雷様の衝撃波形が自然現象波形のモデルとして意識に在った。電力設備の管理上雷の衝撃波は重要な研究対象でもあった。雷の衝撃電圧波形は急峻な立ち上り波頭の指数関数減衰波尾長の波形で認識している。決して正弦波には成らない。しかしその衝撃波表現法にも不満足である。指数関数表現式は時間が無限大に成っても決して現象がゼロには成らない式である。自然現象解釈式には指数減衰式が基本的に使われる。原子核分裂崩壊現象も半減期が幾らと言うように同じ指数減衰関数式で解釈される。プルトニュウムの半減期が何万年と言うような場合の解釈式なら問題にしなくて良かろう。普通の一般的自然現象では無限にゼロに成らない事はなかろう。そんな無限大に続く現象は自然界には無い。宇宙もすべて変転の中に在る。星座も消滅し、新たに産まれ来る天体の星座もある。光の一粒と言う空間エネルギーは波長と言う周期で必ずゼロに成らなければならない。その意味を指数関数式に含めた結果の式が(1)式である。

指数関数と波動関数形 エネルギーの縦波波としての光の表現。

波動関数形 変数xに対する波動関数形として③を選んだ。ただし、変数xの範囲は1≧x≧0で定義する。この変数については、光量子の(1)式では変数ζを使っている。それは無次元数で、波長λや周期τで正規化している。無次元の変数xで、③の場合にx^2^e^(x-1)などと高次とすると、関数波形はもっと急峻な形状となる。なお指数関数についての関連記事がある。指数関数の形と特性(2013/07/03)、指数関数の微分・積分(2015/02/10)および周期関数(科学技術と自然と数学) (2016/01/13) 等である。

光量子の作用性と波頭エネルギー密度H[J/m^3^] 光量子の波動関数形(指数関数)で光を認識すれば、光の一粒の波頭Hが光の作用性に大きく関係していると見做される。

波長λと波頭値H 光量子ε=hν=hc/λで、xに比例する。しかし作用性、波頭値のエネルギー密度で観れば、xの4乗に比例することに成る。光の波長が短くなれば、いわゆる振動数が高くなれば、その作用性は波頭値のエネルギー密度で効いてくると言う解釈ができる。なおここでは変数x=1/λで無次元ではないが、空間距離x/λのようにζは正規化した光量子表式(1)の無次元変数で解釈する。

まとめ 眼で見ることもできない、実験で証明することもできない科学認識は専門的には多分認められないだろう。しかし曖昧な粒子性と波動性の混合解釈論では、その論理は自然の眞髄では通らない話ではなかろうか。見ることが出来ない物には『電荷』も同じ事のように思う。雷が水蒸気の熱の放射現象だと言っても、専門的には、学説では理解されないかもしれない。雷は決して実在しない『電荷』などの現象ではない。上に一通り光量子の自己流(自分にとっては確信論)の解釈をまとめた。しかし大きな矛盾も抱えている。それは光の作用性で、波長の寸法が数千オングストロームで、原子、分子寸法との兼ね合いでの関係性が理解できていない。水素原子H2の放射スペクトラムと言う物理学の最初の解説で、1Åの寸法とその水素原子放射光の寸法の関係を論じることが出来れば良いのだが。追究しようと思うと、光の波長の意味が理解困難にもなるのだ。波長λに対してエネルギー分布空間の長さが波頭部分に集中している場合への解釈が残されてはいよう。

トランジスタのオン・オフ機能と理論の間に?

投稿日: 2017年5月23日 | 投稿者: yoshihirak

突然理解不能の事態に遭遇する。電力用トランジスタは相当大きな電力でも自由に高速でスイッチング素子として制御可能な優れた機能素子である。半導体理論を余り学習して来なかったから、トランジスタのスイッチング機能に何の不思議も気付かなかった。

トランジスタとは スイッチング機能の優れたトランジスタの動作機能については簡単に解釈して納得していた。ところが不図気付くと大変な誤解であったのかと理解不能に陥った。

トランジスタとは トランジスタのスイッチング機能を利用する面から単純に感覚的に認識していた。その回路をベース側に電磁石コイル制御電流でコレクタとエミッタ間の接点制御回路として理解していた。スイッチング機能の理解にはこれで充分であった。しかしトランジスタのN型、P型半導体の接合体として捉えると、二つのダイオードが逆向きに接合された構造であることが分かる。コレクタ側からベースを通してエミッタへ電流を流すとすると、どう見てもコレクタ側のダイオードは電流の流れない逆方向である。どのような製造過程でN-P-N構造の半導体接合部ができるかは知らない。しかしN-P-N型の積層構造であると説明されているから、基本的にダイオードが逆向きで接合されていることになる。ダイオードの機能を解説する時、N型からP型へは逆向きだからダイオードは決してONして電流が流れることはないと言う。謎(p n junctionは何故エネルギーギャップ空間か)でダイオードの意味を考えたので、トランジスタはどうかと考えて見た。

トランジスタはオンするか トランジスタのオン・オフする機能の原理が分からなかったことに気付いた。

オンするか トランジスタに印加する電圧の極性でスイッチング素子としての機能が働くかどうかが分からない。考える頼りはダイオードの機能であるPN接合とそこに掛かる電圧の極性だけである。難しい量子力学の電子運動論は、自分にとっては、理解できる範囲を超えているから無理である。上の①,②と③の各場合の印加電圧の極性でどうなると考えれば良いか。

③が何故オンするか 何故オンするか不思議だ。

何故オンか?何故オンするか 一通りそれぞれの場合のB-C間に掛かる電圧Vbcを考えて見た。Vbcが正ならコレクタ側のダイオードはオンすべき順バイアス電圧である。①と③はB-E間はオンである。②はB-E間が逆バイアスでオフである。さて、①は勘ではオンすると思うが実験してみないと。エミッタ電流と逆向きの兼ね合いでB-C間を通る導通か。②もB-C間での導通のオンになるか。従って①と②はスイッチング機能はないことになる。問題は③が何故スイッチング機能を発揮するかである。理論解説では、ベース電流に対応するエミッタからの注入電子がp型半導体のベース領域を通過中に殆ど90%以上がコレクタ側に注入されるとなっているようだ。それがB-C間の逆向きダイオードの逆流電流を可能にすると説明されている。そんなダイオード機能の逆向き電流を流す理論はどこから生まれたのかとても不思議だ。どんな解説でも、ダイオードの本質的原理を打ち消すようなことだけは言って欲しくない。仕事が無い(1939/12/01 舞鶴鎮守府へ?職歴も書けない故)哀しさから時々、御免なさい(お恥ずかしいことです)。P-N junction 内のエネルギーギャップが解釈の要になろう。『電荷』ではなかなか理論の矛盾を取り除けない。現在まで科学漫遊の旅を経ても、特別研究対象と言える専門もなく、光量子の空間エネルギー分布概念や三相交流回路の瞬時空間ベクトルと何とも取り柄のない始末に負えない存在の浮遊体のようなままに在る。少しトランジスタのスイッチング機能のエネルギーに特化した見方を展開してみたいと思って筆を置く。

光に関する記事 しばらく離れていたが、大事な知って欲しい光の概念がある。もう一度まとめてみたい。

アッツ桜

投稿日: 2017年5月21日 | 投稿者: yoshihirak

アリュウシャン列島のアッツ島も今アッツ桜が咲いているのだろうか。

アッツ桜 1943年(昭和18年)5月19日アッツ島の戦いで日本軍が玉砕した。丁度今頃の季節だった。御冥福を祈る。父も昭和17年5月2日第三特別陸戦隊附同年7月1日第五警備隊、北潜?隊進駐援護作戦に従軍。キスカ島での1年以上に亘る作戦後、昭和18年7月29日キスカ島撤退作戦で帰還した。帰還と言っても父は帰れなかったようだ。シュムシュ(占守島)島に深い因縁があったかもしれない。同年7月29日鳴神島発ー8月1日占守(シュムシュ)島着とあるが、8月5日第51警備隊附天寧派遣の命令により8月17日占守島発(日帝丸)19日天寧着。9月17日天寧発(和光丸)19日室蘭着。20日同発22日舞鶴海兵団入団。この時は既に衰弱し、立つ事も出来ずに実家の父(信策爺さん)に背負われて帰る。父からはキスカ島での戦闘の話や、ネズミを食べて過ごしたなど。また撤退時の雲に隠れての幸運の話等を聞いた。軍歴票は墨で塗られて不明の部分がキスカに関係している。敗戦後の9月2日ミズリー号の後も、その年は暮まで帰られない仕事があったようだ。何時帰ったかも覚えていない。

舞鶴での思い出がある。舞鶴東港は平成5年に訪れた時、兵舎があるようだった。敗戦前にはそこに本館があり、入口の広間には大きな鯉の滝登りの額が掲げられていた。館の正面には飛行機があった。父と偉そうな軍人が居て、その飛行機に乗ることを許されて乗った。席は一つか二つしかなかった。父は帰還後、新兵教育の教班長をしていたようだ。終戦後、舞鶴国民学校から、おそらく貝野小学校に転校の手続きは成されていなかったのではと?すべては昭和24年4月の貝野村役場での中央からの行政官が来られての処理行政に因ってどうなったか?

戸籍転籍の不可解 昭和14年12月1日(1939/12/01)舞鶴鎮守府所管(所管という意味が不可解である。権力による強制的な仕打ちか?その日付で第一国民兵役編入とあるが、戸籍転籍は法律に因らない不法行政?)へ轉籍 父は召集されるのを危惧して、10月1日に日本発送電株式会社へ就職した。それを内務省が計って轉籍にしたと思う。戸籍附票の筆頭者頭の「亡」の字の意味。しかし軍には昭和16年9月2日に、『充員召集ヲ令セラレ』で舞鶴鎮守府から発令されているから、それまでの2年間は日本発送電株式会社の社員として送電線路保守業務にも務めていた筈だ。昭和36年交通事故で亡くなり、東京電力社長 木川田 隆一 氏の弔辞には、昭和14年から一貫して21年間送電線路保守員として働いた云々・・と有り軍歴は無いことになっている。舞鶴鎮守府の前は、大正15年12月13日横須賀海兵団 舞鶴練習部入団。軍艦 『加古』その後『多摩』乗り組み。軍艦多摩乗組員代表で昭和天皇の御大礼に参列。菊の紋入りの大きな勲章が家に在った。軍歴の記載の不可解。第一国民兵役満期 昭和21年9月5日。帰休 26年3月31日。とは?

我が存在 私は偽者か

水泳の検定結果をpcに入力すると、「不合格」と打ち出されて、認定証の作成が出来ない。と作成関係者から説明された。名前が認識されないと言う事は存在が否定されていると同じ意味に思える。昭和14年12月1日以降にどのように舞鶴鎮守府から戸籍が回復したか?

謎(p n junction は何故エネルギーギャップ空間か)

投稿日: 2017年5月18日 | 投稿者: yoshihirak

『エネルギー』の存在形態を尋ねる旅。半導体はエネルギー変換制御に欠かせないスイッチング素子である。電力制御とは『エネルギー』制御である。三相交流回路の瞬時空間ベクトル解析で、スイッチング機能を回路定数サセプタンス化して解釈する意味を考える。その基礎考察で半導体の意味を理解したい。電力系統のスイッチング機能を担う半導体のp n junction とはどんな物理的意味を持っているかが分からない。その動作原理を『電荷』に頼れないとすれば、『エネルギー』に頼るしかない。専門家は良く解って居られることだ。しかし私は理解できないから困っている。何とか、まとめ に結論と覚悟した。

エネルギーギャップ 素人なりのp n junction の意味をダイオードを例に考えた。p型半導体とn型半導体の接合部にどんな現象が起きるのか。理解力の低い頭にはフェルミレベルという専門用語さえ理解できないのである。単純な頭で考える単純な考えは、『エネルギー』の内部分布しか思い当らない。そんな意味を図に表現してみた。エネルギーギャップと電圧の間に謎を解く鍵がないかと期待する。エネルギーは高密度部から低密度部へ流れると考えたいが、乾電池に蓄えられる『エネルギー』は内部では消耗しないで、必ず外部負荷を通して消費する。乾電池も『電荷』では理解できないので、考える謎解きの旅でもある。

まとめ 過去の記事をまとめて確認しておきたい。エネルギーギャップという意味に至るまでの過程も見たいから。最近の記事から古い記事の順で。電気回路スイッチもエネルギーギャップを支える機能要素と解釈する。コンデンサの場合も、エネルギー貯蔵のそのエネルギー空間形態をどのように理解するかも確答できずにいる。スイッチとはエネルギーギャップのスイッチング機能要素と看做せるだろう。その解釈をダイオードのスイッチング作用に広げて捉えた。接合部にエネルギー準位差が生じると、丁度スイッチオフの状態と同じ働きを呈すると考えた。単1乾電池もエネルギー貯蔵庫で、そのエネルギーが内部でオフ状態を保持しているように思える。外部でエネルギーギャップゼロとするような回路接続をすると、エネルギーが流れる。ダイオードのn側にマイナス電源で、エネルギー準位を高める接続により外部回路と電源がつながる状態になる。ダイオードのエネルギーギャップが解消されてスイッチオン状態となる。こんな単純な解釈しかできないのである。難しい『電荷』概念での解釈ができないので止むを得ないかと覚悟した。

半導体とエネルギーギャップ

  1. ダイオードの機能 (2016/09/17)
  2. 電気回路とスイッチの機能
  3. 物質のエネルギー準位
  4. 問答実験
  5. 半導体とバンド理論の解剖
  6. トランジスタの熱勘定 (2013/01/30)

電圧とエネルギー

  1. 電圧ーその意味と正体ー (2016/05/15)
  2. 電池と『エネルギーギャップ』
  3. 電池の原理を問う
  4. 電圧ー物理学解剖論 (2011/12/14)