時定数と回路問答

投稿日: 2017年8月15日 | 投稿者: yoshihirak

時定数から観る電気現象で問答として残しておいた課題が有った。一部はLとCと空間エネルギーとしてまとめた。図2 時定数Tと力率角φの具体的な意味の説明がなかったので、少し述べたい。もう一つは等価回路変換の問題であった。電気回路の特性が回路要素によって決まることはそのインピーダンスの意味(虚数概念の矛盾の未解決を残して)を通して良く周知されている。インダクタンスとキャパシタンスの個別解釈で回路動作解釈は少し複雑ではあるが、その伝統的解析で納得していた。しかし、今年になって時定数の交流回路解析における意味の拡大適用を取上げた結果、とても利用価値と解析手法としての有効性が有ると認識を新たにした。
時定数の意義と指標K 電気回路は単純に考えれば、エネルギー消費要素の抵抗とエネルギー貯蔵要素のリアクタンスの二つから成り立つと見做せる。インダクタンスとキャパシタンスと言う個別機能を考えるより、それをまとめてリアクタンス分と認識すれば良い筈だった。その意味を表現する回路定数が時定数である。インダクタンスのエネルギー貯蔵機能とキャパシタンスのエネルギー貯蔵機能とは『エネルギー』の空間に存在する意味をまとめて統合して捉えれば良いだけである。その解釈法を表現する概念が『時定数』であった訳だ。電線路の負荷回路内の電気特性を解釈するには結局『時定数』一つで『エネルギー』の振る舞いを理解できることになる。急に時定数とその評価係数Kが有意義なものに思えて来た。そこで時定数の指標Kと呼ぶことにする。電力回路は殆ど誘導性負荷である。従ってリアクトルのインダクタンスLをその回路の無効電力の原因として認識し、着目する事になる。回路要素としてのLの無効電力を補償する様な意味で解釈するには、リアクタンスが零で、その指標K=0を基本に考えれば良い。それは電源周波数での『共振条件』で、電源から見れば抵抗負荷のみの状態と同じである。

指標K  回路が誘導性か容量性かはリアクタンスXが正か負かで決まる。回路のインダクタンスLに対して、その係数となる指標Kの値がその判断の基になる。K=0ならば、リアクタンスLo=0で回路は純抵抗と等価な特性となる。
問答(1) 指標Kと回路特性 具体的な回路要素の値で回路特性を考えてみよう。

指標Kと回路特性 インダクタンスL=67.54747 mH と数値に見苦しさが有るが、コンデンサ容量C=150 μF とで電源角速度ω=2πf=100π rad/sでの共振条件からの選定値であるためご容赦のほど。その回路要素値の組み合わせで丁度指標K=0 となる。さて指標K=0.7 となるような回路条件を求めてみよう。R およびL は同じまま、コンデンサ容量をC=500 μF とすれば、K=0.7 の条件を満たす。力率角φは角度90 °の0.623 倍となる。力率は0.56 程度の相当の遅れ力率回路になる。K=0.7 の図表解釈。この図表は正弦波交流の場合に於いて、電源電圧値や周波数に関わりなく、どの場合にも適用可能な図表である。 (留意点) この図表での力率角φは電圧に対する電流位相差としては、遅れ位相が『正』で表現してある。実際の電流波形表現では、 sin(ωt+φ)=sin ωt cosφ +cos ωt sinφ に適用する場合は、φを図表とは逆の符号『負』として解釈しなければならない。容量性負荷では、やはり逆の『正』の進相で取り扱う。
問答(2) 等価回路変換定理の適用問答 指標K=0.7 の場合のR-L-C直列回路を並列回路に等価変換してみよう。

問答2 等価回路変換 時定数に因る回路解析の手法の例である。少し数値が有効数字の桁として問題のようにも思う。直列回路と並列回路の回路電流値が等しくなるに4捨5入の3桁程度で良かった。等価回路変換の定理が有効な手段になろう。

人生の不可解 人は社会的存在として自己確認が出来る。社会的存在とはどんなことかと自問自答してもやっぱり分からない。周りの人との関係で生きる社会的自己確認をするのだろう。どうも自分の行動意識は余り周りの事を考えずに、悪く言えば勝手族と非難されそうだ。人とも相談せずに勝手な解釈で行動する。だから顰蹙を買い、嫌われる。工業高校で、生徒の電験3種受験指導を勝手に放課後毎日したのも、嫌味と取られかねない。年には7名程が合格した事も有り、生徒の為には良かったと。内地留学で、学校を留守にするのに生徒の授業や周りの迷惑など一切お構いなしの勝手族であった。最近になって気付いたが、代わりの授業をやって頂く講師が居られるのに、自分の机も整理せずに御迷惑を掛けた。恥ずかしい限りだ。馬鹿の一つ覚えで、ただ電気回路の事ばかりを追い掛けていたような気もする。社会で人と関わると勝手族の行動で、巧く馴染めないようだ。それは転勤できなかった事が原因であった為か、大学でもそうであったし、長岡工業高等専門学校では最初から電気科の教官とは馴染もう等とも思っていなかった。ただ2年間学生に出来る授業で役立てられればとの思いで、学校と馴染む意思は最初から全くなかった。自分が中曽根臨時教育審議会の抹殺対象だなど知る由もなく、意味の分からない中で「生命」だけを守って過ごした。今も訳の分からない中で、こんな電気回路の解析法等を考えている自分を眺めれば、幼稚な馬鹿者以外の何者でもない。勝手に自己満足の解析法などと恥ずかしさを曝している。高専でも、大学でも学生の学習評価会議などには一度も出席の要請連絡もないから、出席した事がなく、高等教育の実際の様子など何も知らない。ただ世の中に流されながらここまで生きて来た。電気工学の伝統のある学問の中でも、『時定数』や瞬時空間ベクトル解析等、未だ新しい未開の分野が有ることに筆者が関わる等と言う人生の不思議も理解に苦しむ事だ。しかし、昭和14年12月1日の舞鶴鎮守府への『戸籍転籍(帰還の記録が見えない)』問題が人生の根底にあるとの、消された人生の疑念は消えない。

ボイル・シャルルの法則と水蒸気

投稿日: 2017年8月7日 | 投稿者: yoshihirak

気体の体積膨張と収縮はボイル・シャルルの法則として纏められている。温度と圧力と体積の関係が分かり易い数式で表現されている。筆者にも感覚的に理解し易く、受け入れやすい式である。しかし少し詳しい説明になると、気体定数やアボガドロ定数との関係で解説されるが、その高等理論(特に気体分子運動論)を理解するには能力的に困難が伴う。地球気温の異常さを感じ、豪雨水害の悲惨な生活破壊の多さを見るにつけ、空気と言う気体の中味をどう解釈すれば市民的科学テラシーの常識を持つと言えるのだろうか。酸素O2と水素H2と窒素N2と水H2O(水蒸気)の温度特性に違いが有るからじゃないかと考えるが、それらの個別の気体分析は検索に出て来ない。みんなアボガドロ定数の御蔭で教育されているからか、何処にも違いは見えない。空気中の水蒸気含有率(質量)の温度依存特性でも調べられて居れば分かるのだが、こんな時代だからデーターが有ればと思う。空気中の水蒸気含有率は素人解釈ながら、地球表面に於ける太陽光線の『レンズ収束効果』による気温上昇への拍車をかけないかと気掛かりなことでもある。地球上が水蒸気でその温度特性に翻弄されているような気分だ。産業革命の元になった蒸気機関は水分子の特性を際立てた主役である。現代の原子力発電等の汽力発電所は水分子H2Oの独壇場だ。その力強さは湯灌で水を沸かすと、底から沸騰と言う自然現象で水分子が膨張する様子に見られるが、それも他の気体分子と同じ現象で理解すべき事だろうか?酸素と水素原子が結合した分子H2Oと言うが、とても不思議なことと感じる。ペットボトルの空気(水蒸気)収縮 お茶の飲み残しのボトルを冷蔵庫に入れた置いたら冷やされて細くくびれていた。改めて30数度のお湯をボトルに入れ、冷凍庫に入れて見た。冷やされて氷が出来て、写真のように体積収縮で括(クビ)れてしまった。上空に寒気が張りだし、空気の水蒸気が体積収縮を起こし、上空の低気圧に因る地上の水蒸気を含む空気が急上昇し、竜巻になったり、冷やされた水蒸気が雹になる現象の意味が良く理解できると思った。酸素分子も同じような現象を起こすのだろうかとアボガドロ定数に関する気体論とボイル・シャルルの法則を考えた。気体分子運動論が現代物理学の標準理論になっているようだ。その理論には質量がエネルギー解釈の基本条件になっているから、その理論による水分子H2Oの質量の運動エネルギーで解釈すると成ると、ボイル・シャルルの法則以上に理解不能の筆者だ。以前『温度とは何か』が問うもの でも考えた。

蝉の誕生

投稿日: 2017年8月6日 | 投稿者: yoshihirak

日本の夏の有り触れた風景。

クマゼミか?長い土の中での生活から地上の新しい世界に生れ出る不思議な生態の昆虫だ。昨年都合で伐採した椿の根元で暮らしていたのだろう。椿の根は未だ生きているから、そこが故郷。蝉は7年と言うが、今でも雨蛙の地中生活の年数は1年かどうかも分からない。蝉は樹木の表皮に卵を産み付けるらしい。その卵がどのように土の中に入るかを知らない。自然の不思議は心のオアシスだ。

飛び立つ前の準備か。二日後の今日も近くで鳴いている。生まれた場所から離れないで過ごすか。鳴くのはオスだけか?

LとCと空間エネルギー

投稿日: 2017年8月2日 | 投稿者: yoshihirak

電気回路には回路要素のLとCがある。インダクタンスLもコンデンサCもエネルギー貯蔵要素だ。インダクタンスLの値はその形状と寸法で決まり、「長岡係数」と言う係数もある。コンデンサCもその形状と寸法で値が決まる。勿論それらの空間環境を占める磁性材料や誘電体材料によって大きく影響されることは当然である。

形状と寸法で決まる訳は何か 時定数から観る電気現象で『問答』にしたL,Cとの関係についての参考記事でもある。電気現象の本質がすべて導体や誘電体、磁性体とその近傍における『エネルギー』の振る舞いによって様々な特性を表すことに在る。すべては空間のエネルギーの存在形態として見ることも出来よう。だから『エネルギー』の貯蔵空間の意味によってインダクタンスとかコンデンサとかの電気要素で捉える分け方になると言えよう。ただ『エネルギー』の量がその要素の空間の大きさで決まるのか、その形状を構成する空間の何が大きく影響を与えるかなど不明な事も多い。そこで、回路要素の形状と機能を『エネルギー』から考えてみよう。

空間エネルギーとは? あまり馴染みのない用語かもしれない。物理学理論には質量を伴わない『エネルギー』の存在、その概念があるのかが分からない。世界は『エネルギー』から出来あがっていると思えるから、物理学理論が理解できない。筆者の頭脳の能力が劣っていると言われれば止むを得ないが。周りを見渡せば、光が世界の姿を教えてくれる。その光はどんな素粒子から出来ていると物理学では考えているのだろうか。太陽から届く光の『エネルギー』は何からできていると考えているのだろうか。その身の周りに在る全てのエネルギーが『空間エネルギー』の姿であると言うのが筆者の考えである。電線路を伝送される電気の『エネルギー』も星から届く星座の光もすべて空間を通って流れる『エネルギー』の姿である。それら全てが『空間エネルギー』である。電熱器のヒーターが熱い熱源として働くのも、白熱電球のヒラメントが光源として働くのも、いわゆる抵抗体の内部に『エネルギー』が蓄積され、その貯蔵限度を超えた『エネルギー』が空間に放射されるだけの現象でしかない。質量のタングステンヒラメントの内部は空間構造を成していると看做せて、そこに『エネルギー』が貯蔵されているのだ。それも含めて『空間エネルギー』と言える。電気回路要素のコイルやコンデンサも『空間エネルギー』の貯蔵空間を構成している構造体である。ただコイルやコンデンサは抵抗体と違って、貯蔵した空間エネルギーは外部空間に放射はされず、必ず電気回路内の空間を通して、電源に回生される。だから基本的にはエネルギーの消費はしない。『エネルギー』を処理しながら、消費しないから結果的に利用されない無効の『エネルギー』なのである。その電力が無効電力と言われる訳である。放送電波や携帯情報端末で取り入れる電波はその電波の波長に同期する共振回路で、空間エネルギーの縦波を取り込み、コイルやコンデンサ内の『エネルギー』を選別して利用している毎日である。空間を『電荷』が光速度で飛んでくる訳では決してない。光の縦波の『エネルギー』が空間と共鳴状態(誘電率と透磁率)で伝送されているだけである。みんな空間エネルギーである。

回路要素と空間エネルギー 空間を電気技術から観ると真空透磁率μoと真空誘電率εoと言う基本定数によって解釈する。空間に存在する『エネルギー』は電気技術的観点から解釈すれば、必ず透磁率と誘電率と言う定数によって判断するように習慣づけられていた。その空間定数と同じ観方で、LとCを捉える。真空透磁率や誘電率が自然の眞髄から観れば、その深い哲学的な意味までは理解できないでいる。一つの自然解釈法の基準定数として理解しているに過ぎない。その観方からすれば、インダクタンスと静電容量のエネルギー貯蔵機能も統一的に解釈できれば良いと思うが難しい。

LCとエネルギー LとCおよびRの違いは何だろうか。先ず初めにはっきりさせておきたい事がある。導体のエネルギーに対する解釈である。一本の導線を張れば、その空間に今までと異なる影響を生み出す。エネルギーが基本的には導体を反射体として捉えるだろう。導体の中に侵入すればおそらく熱エネルギーとして消費されるだろう。極端な例が『超伝導体』である。エネルギーロスが無いと言うことは超伝導体が完全反射体であるからである。逆に抵抗体は極めて効率良く空間エネルギーを内部構造体の中に取り込み熱エネルギーとして貯蔵する特性を持った要素と看做せる。貯蔵限界まで蓄えた結果温度が上昇し遂には放射源となって発光、発熱作用現象を呈する。抵抗体の単位を[(H/F)^1/2^]と評価したのも、エネルギーに対する空間の意味を統一的に捉える観点からである。科学技術法則の単位のΩの優れた点とは別に、自然の物理的、より深いつながりを重視した一つの解釈法でしかないが。LとCについては個別に考えてみたい

Lと空間エネルギー リアクトルと言う用語は電力技術用語かもしれない。それは電力用誘導性コイルと言う意味で捉える習慣だ。リアクタンスはコイルとコンデンサの両方に使う用語だが、電力技術では主に誘導性のコイルが主要な回路要素であるために、その用語を代用したのかもしれない。インダクタンスよりリアクトルと言う使い方が馴染みやすい。変圧器もモーターも殆ど鉄心がその主要な構成材となっている。銅線以外は鉄で出来ていると言えよう。電気磁気学のインダクタンスと言う概念と感覚的に電力技術での捉え方には違いがあるかもしれない。『空間エネルギー』の解釈には、リアクトルと言う鉄と銅線から構成された電力機器が頭に浮かぶ。そこでリアクトルと言う捉え方で、電力用インダクタンスLの意味を考えてみよう。

(L-1)ギャップとインダクタンス E I 型鉄心を用いて、コイルNターンを二脚に巻いた。鉄心EとIの間にギャップgがある。そのギャップ寸法が電気要素としてのコイルのインダクタンスにどのような影響を及ぼすか文献(1)が参考になろう。ただgの寸法がインダクタンスLにどんな関数関係で影響するかは、その意味が明確ではないように思う。『空間エネルギー』が鉄心ギャップ部分に集中して存在する事が大きくリアクトルの特性に影響を及ぼしていることは間違いない。ギャップgが小さくなるほどLは大きくなる。しかしg=0ではリアクトルとしての機能は果たせなくなる。インダクタンスL=∞となるから、エネルギー貯蔵機能は無い。それは変圧器となるから。序でに考えておこう。モーターも重い外側の固定子と回転子との間のギャップがエネルギーの存在する大事な空間であり、ギャップ空間エネルギーの振る舞いを動力発生の原理に解釈を広げられれば、物理的『空間エネルギー』の電気現象の役割がはっきりするであろう。若い方に挑戦して欲しい。

(L-2) 変圧器等価回路 鉄心間にギャップがある変圧器は漏れ変圧器と言う。ギャップ空間にエネルギーを貯蔵する機能でリアクトルと漏れ変圧器は同じ意味で捉える事も出来よう。そのギャップg=0ではインダクタンスL=∞で、リアクトル電流は流れ得ない。エネルギー貯蔵機能も無くなる。変圧器等価回路では、相互インダクタンスMとして評価される。1次、2次負荷電流の相互関係を解釈する為にはMが便利であるからであろう。しかし、変圧器の励磁電流と磁束概念の伝統的解釈法では、磁気特性の非線形性をうまく表現し難い点があろう。それは磁束が励磁電流によって発生する訳ではないと考えなければ解決できない現象である。ファラディーの法則の微分形式には電流と磁束の関係は何も表現されていない。微分形式を積分形式で表現すれば、巻線コイル1ターン当たりの電圧の時間積分で磁束φは評価すれば良いだけである。もし励磁電流で磁束を解釈するなら、非線形回路を書き加える便法もあろうが、余り意味は無かろう。しかも磁束さえも技術的解釈概念である訳で、結局は空間エネルギーの一つの観方でしかないと考える。しかし、その磁束概念は磁気現象を解釈するには大変便利で有用な概念であることには間違いないものである。さてリアクトルの『空間エネルギー』であるが、コイル巻線の導体周辺に分布していると考えざるを得ない。電圧概念が元々空間のエネルギー分布の技術的評価概念であると観れば、その解釈法も理解し易かろう。インダクタンス値がコイルの1ターン長さに因るだろうと言う解釈も、鉄心最大磁束密度Bmと鉄心断面積の積φmと言う設計基準の解釈法とも通じていると理解できよう。V=4.44fNφmの意味もコイル1ターン長との関係で理解できよう。

Cと空間エネルギー リアクタンスの一つにコンデンサがある。コイルとはその構造も空間材料(磁性体に対して誘電体)も全く異なる。同じ電気のエネルギーの貯蔵機能要素である。伝統的には実在しない『電荷』概念で評価している。このコンデンサの静電容量と形状の関係が先の記事の『問答』の解答ともなる訳であろう。コンデンサ容量はその電極間の面積に比例し、電極間のギャップdに反比例すると解釈されている。面積一定のままで、ギャップ寸法dを狭くしたら静電容量が大きくなるのだろうか。極限はギャップ零に近付けることになる。ギャップd=0は丁度電気回路のスイッチを投入したような状態となろう。それはもうコンデンサとは無関係の状態である。空間エネルギーを保持する状態ではなくなる。コンデンサ容量Cはd=0で定義式では無限大となるがそれは意味の無い事である。コンデンサのリアクタンスXcで考えれば、d=0でXc=0となって、インピーダンスにおける意味に矛盾は無くなり理解できる。『問答』のKとの関係も理解できよう。以上がコンデンサの寸法についての解釈としよう。さて、リアクトルと同じように少しコンデンサの機能についてその物理的(物理学教科書的ではない、学習指導要領的ではない)意味を考えてみよう。

電線路とコンデンサ機能 ある配電線路の終端にコンデンサだけを負荷としてつないだ回路を考えてみる。今までも何度か電圧の意味の考え方は述べて来た。その意味をコンデンサ負荷との関係でもう一度整理してみよう。電線路については分布定数回路と言う観方が高周波で採られる。それは何も電圧の周波数に因ることではなく、すべて電線路はエネルギー伝送から観れば、回路としてはコイルとコンデンサの分布回路と観なければならない。電源電圧が正弦波とすれば、瞬時的には電線路全体がその電圧の変動回路となる。何が電線路の電圧の原因を成しているかと言えば、その電線路空間の『エネルギー』分布である。電源から負荷までの電線路空間が電源電圧の瞬時値に対応したエネルギー分布で平衡状態を保持するように、空間を『エネルギー』が自動的に伝送されるから有効な電力伝送設備が可能なのである。それは『エネルギー』の自然界の現象で、光速度伝送する自然現象の御蔭なのである。その自然現象を科学技術概念で便利な捉え方で利用している訳である。上の図で電線路終端のコンデンサ負荷では、電源電圧の変動に対して、光速度での遅れは伴うが、電源電圧に対応するべくコンデンサ内のエネルギー分布を確立するための、エネルギー貯蔵で機能する訳である。コンデンサの電極板導体の面積が広ければ、その面積全体に亘って電圧vcに対応するべくエネルギー分布を行き渡らせなければならない訳だから、多くの『空間エネルギー』を貯蔵する必要がある。そのエネルギー貯蔵に於いては、コイルのようなエネルギー入射を妨げる作用は無いから、極めて瞬時に電圧変動に対応して、素早い応答で機能が発揮される。コンデンサの電気要素としての感覚的認識にはそんな意味で納得できるだろう。誘電体に強誘電体材料が使われるが、その材料のエネルギー貯蔵特性には時間的遅延性などがあるため、特殊な特性を示す面もあろう。最後に付け加えておこう。電源電圧の極性と電線路の『エネルギー』伝送空間について。図に示したような電源電圧の『極性』は(+)、(-)で馴染んでいるから分かり易いと思うが、本当はその『極性』とは何かと問えば分からない筈であるにも拘らず、理解され易いと言う科学技術の恩恵(?)がある。しかし実際に『極性』と言える意味の電気現象に差が存在する事も確かな事であるから、それが『何か?』と疑問に思う。今から丁度7年前に、記事を元のSpaces.live.com/に投稿させて頂いた。その科学論の最初の記事が放電現象と電荷・電流概念である。放電現象は電気現象の意味を解く最初の研究対象でもあったとも見做されよう。そこで『陰極線』と言う得体の知れない流れがあると見做した。(+)側からは流れない事を知った筈だ。その『何か』が流れ出る側が(-)側であると。その応用が三極真空管の熱陰極線の空間電荷制御法になった。乾電池、蓄電池の電源も(-)側が『エネルギー』供給源になっているようだから、交流回路の電線路の『エネルギー』流も(-)側にその流れがあると解釈して良かろうとの判断である。その流れは光の流れと同じだから、科学の論証に従った実験的に検証する方法は考え付かない。

不適格な科学論か? 上に述べた事を含めて、殆ど科学者の検証に耐える根拠が示されていない。それにも拘らず、『電荷』否定から始まった記事は殆ど数学的解析式などもなく、ただ日常用語で『エネルギー』の電気現象における振る舞いを感覚的に納得できる意味を述べさせて頂いた。科学論らしくなくて御免なさい。

文献(1) 大学講義 最新電気機器学 宮入庄太著 (丸善)   p.53~

 

時定数から観る電気現象

投稿日: 2017年7月23日 | 投稿者: yoshihirak

まえがき 気軽に使っていた電気回路の時定数が余り一般的な常用概念で無いようだと気付いた。検索で調べると、過渡現象での応答時間としての意味が中心となっているようだ。オペアンプの電子回路で重要な意味を持っている。序でに古い学術用語集の電気工学編と物理学編を開いてみた。驚いたことにそのどちらにも『時定数』は載っていなかった。電気回路の角周波数ωの意味は?の記事が良く見られている。その訳が『時定数』を使ってインピーダンスを表現している事かな?とも思えた。商用電源周波数ωとの関係での認識は余り無いようだ。ところが少し考えてみると、自分でも意味が分からない事があることに気付いた。そこで、正弦波交流回路での電気現象を時定数に着目して、少し詳しく考察してみようと考えた。伝統的に完成した電気回路解析に時定数を導入すると、また新しい現象の意味が観えて来るように思う。時定数は電気回路要素によって決まる数値であるから、回路の特性評価はその値でほぼ決まる訳で、交流回路解析に利用しないのは勿体ないであろう。そんな感覚で求めたのが等価回路変換の定理でもある。

電気回路実験 こんな実験をしたいと思った。回路要素の値をいろいろ変えて確認したいと。L とC の値は丁度50Hzで共振する値である。R=0で本当に共振するかな~?と思いながら。

時定数とは? 電気回路の中でも余りにも根本的な事だから、物理実験と思ったが、それも相応しくなかったかも知れない。この回路を例にして議論を進めたい。

時定数とインピーダンス 電気回路は例題の図のようにL-R-Cの3つの要素で解釈する。しかしそんなに実際の回路は単純ではない。例えば電気のモーター負荷を考えれば、回路要素で表現するのも難しい。抵抗分Rは巻線の分は測定できるが、実際の動力としてエネルギーを消費している消費電力分を評価するには抵抗値として解釈するが、そんな抵抗がある訳ではない。暑い夏に使う『クーラー』はモーターが冷媒を圧縮する動力の『エネルギー』を利用する家庭電化製品としてお馴染である。今年の日本列島はまた一段と酷暑の様相を帯びている。世界的傾向でもある。便利な『クーラー』は地球加熱機でもあるんだよね。そのエネルギー変換器(電気エネルギーから熱エネルギーへの)の回路要素はやはり抵抗で等価的要素と看做す訳である。回路に在る抵抗とは少し異なる意味を持っている。そんな動力の等価抵抗をも含めて、回路要素の意味を捉えるには、時定数と言う技術概念が便利であろうと考える。そのインピーダンス表現については、電気現象と三角関数に述べた。

時定数と電気特性 回路要素と時定数の関係について、少し考え方と意味を見直さなければならないと思う事がある。今まで、回路要素の次元から無意識的に時定数を捉えて来た。その意味は次のようなものであった。しかし、①,②,③に対して④のようなインピーダンスから得られる時定数まで含めると、今までのような意味だけで単純に解釈できないようだ。

回路と時定数 初めに挙げた実験回路の回路要素の組み合わせでその回路の時定数を図1のように考えていた。①、②および③の様に捉えていた。②のT=RC [s] は積分回路に使われるなど馴染みの時定数である。しかし、正弦波交流回路のインピーダンスとの関係で特別な意味を持っているとは考えていなかった。それが前の記事で述べたように、④のような回路要素R-L-Cの場合には、T=RCと言う定数には余り重要性が観えなくなってしまった。その事を次のグラフで示す。

時定数Tと力率角φ 実験回路の要素値L=67.55mH 、C=150μFで、抵抗R=10 ΩとR=1Ω の二通りの場合の回路特性を計算した。今まで時定数が次元が時間[s]でありながら、正弦波形上では時間の意味を持っていなかったことに、その意味を理解できずにいた。時定数の時間をようやく理解できた。時間t=φ/ω=(arc tan ωT)/ω で時刻の時間に換算されることを理解した。その回路の力率角φと時定数を図2に表現した。電気回路解析上で、今まで隠れていた宝物を探し出したような気分に居る。電気回路が芸術に見える。横軸座標の変数にK={1-1/(ω^2^LC)} を選んだ。Kの範囲は 1から-1の範囲である。K=1の意味はコンデンサの無いR-L回路である。またK=-1の状態はリアクトルが無い、R-C回路である。K=0の場合はCとLのエネルギーの貯蔵容量が等しく、丁度位相反転の状態で、LとCの間でエネルギーの遣り取りがなされ、外部からは無効電力要素が観えない状態である。いわゆる共振現象状態にある。ただ抵抗負荷と観えるだけである。

L、Cと変数Kの間の関係『問答』 グラフの意味を少し説明する。K≧0の誘導性回路の場合のKの変化の意味。抵抗値一定、リアクトルL=67.55mHのままで、コンデンサCの値を150μFから変化させれば、Kは変わる。ではどのようにコンデンサの値を変えれば良いか?実は筆者も戸惑った。解答を得たが、しばらく『問答』として置く。ヒント:K≦0の負の場合は分かり易い。コンデンサの値を150μFのままで、コイルの値を減少して零にすれば良い。簡単で、コイルの巻線を解いて行き、コイルが無くなればL=0となる。その時K=-1である。頭の遊びにコンデンサの場合を考えてみましょう。この関係には、物理的考察の価値があるので別の記事とする。電気工学の『エネルギー』が空間の実在概念として重要であるとの意味を考えてみたい。

時定数と等価回路変換『問答2』 折角等価回路変換の定理を提唱した手前、この問題にその手法を適用してみよう。

等価回路変換 直列回路の要素が並列回路に等価変換できる。先に取上げた等価回路変換定理に従って変換したら、回路要素はL’、C’およびR’のようになる。『問答2』:L’ 、C’ およびR’の算定は課題としておきたい。(ヒント)エネルギーに対して、要素の抵抗分とリアクトル分は互いに関係し合っている。

エネルギー消費と未来予想図(苦い話) 科学技術の恩恵で、過酷な労働から解放され、時間的な余裕のある生活を予想図として描いて来た。しかし労働条件や生活環境は望んだほど良くならず、むしろ自然環境が人の制御できない過酷な状況を呈している。熱中症に気を付ける等と言うことは50年前には全く予想していなかった。それは誰も恨めない己自身の人間が創り上げた地球環境だから。昔の東京オリンピックの頃には春と秋の穏やかな四季を生活のリズムに過ごしていた。来る東京オリンピックが平穏な気候の中で成功して欲しいのだが。地球環境に関わる『エネルギー』とは如何なるものかを考えたい。その『エネルギー』の意味を理科教育で子供達に教えているだろうかと心配だ。電気エネルギーを消費することは、その人が消費するエネルギーと同じ量の『熱エネルギー』で海の水を釜(原子力発電所等の汽力(蒸気力)発電所の復水器)として沸かしていることを知って欲しい。その発電所の熱効率が43%程度で、半分以上が海の加熱エネルギーとして捨てられて、初めて電気エネルギーが利用できることを知って欲しい。さらに利用した『エネルギー』のどれ程かがやはり地球の加熱エネルギーに費やされている。異常気象豪雨は人間が過熱した海の温度上昇の熱エネルギーがもたらしている人工災害でもある事を。電気エネルギーを利用する人間の全ての人が知っていなければならない科学技術社会の基本知識である筈だ。理科教育の社会的課題でないか?

電気現象と三角関数

投稿日: 2017年7月10日 | 投稿者: yoshihirak

電気現象、特に交流回路の電気回路解析には三角関数の数学的処理が欠かせない。波の正弦波の周期性を、時間変数に対する計算手法で算定できる意味は数学の貢献で特筆すべき事と思う。有り触れたなじみ深い三角関数はその関数の概念も分かり易さで優れている。しかし、電気現象への応用数学として使いなれているにも拘らず、本当に理解しているのかと自問自答してみた。三角関数一つを取上げてみても、そこには十分捉え切っていない部分があることに気付かされた。
指導と要領 どこかのお偉い方が決める「何々要領」じゃないが、指導者が何事にも疑問を持っていつも向き合っていないと大切な噛み砕いて理解する『深く易しい意味』を教えずに過ごしているように思った。それが指導の要領であろうと。教育関係機関から不要とされて、彷徨う者が言うのも可笑しな錯覚か。今頃になって、解らずにこの何年かを過ごして、今不図気付いたことがある。回路要素によって決まる『時定数』の時間概念について。その認識不足を取り上げたい。

電気回路と数式 電気回路解析に三角関数は必須である。その辺の基礎から考えてみた。

インピーダンスと三角関数が交流回路の解析に必要な基礎知識である。電源電圧が決まれば、回路動作はその回路要素の値によって全てが決まる。その三角関数による表現手法が基礎知識として求められる。

インピーダンスの計算問答 交流回路のインピーダンスは各回路要素の特性から複素関数的な取扱いをするので、『虚数』概念を用いるようだ。虚数は記号 j かあるいはi を使う。ここでは電気記号で使う記号 j とする。

ピタゴラスと虚数の関係

上のインピーダンス表記法の虚数問題の解決法は虚数を使わない三次元空間ベクトル問題(時間を入れて4次元)として別の記事で改めて示すつもりだ。

三角関数とその意味 自分の理解している三角関数の意味を確認した。

電流と位相 電流の三角関数式の意味をまとめた。

電流と位相 電圧に対する電流波形の位相差φが回路要素によって決まる。

インピーダンスと時定数 交流回路解析では、時定数を用いたインピーダンス表現はしていないのかもしれない。しかし電気回路の要素によってその回路に特有の『時定数』があると考えた。インピーダンスはその時定数とエネルギー消費負荷要素の抵抗値とで回路の現象が決まる筈だ。

インピーダンスと時定数 R-L-Cの直列回路でそのインピーダンスは複雑な表式になる。インダクタンスもキャパシタンスもどちらもエネルギーの貯蔵要素である。その合成値は一つのリアクタンスと看做せよう。LとCのエネルギーの貯蔵機能は電源電圧周期波形に対して位相が90度ずれて、エネルギーの貯蔵と放出が反転している。エネルギーに対する機能として見た場合、差し引きの差分で回路外部には見える。だからリアクトルとキャパシタンスはその外部から見れば、エネルギーの差分の機能しかないと見做せる。だから合成リアクタンスと看做して良い筈だ。従って、エネルギーの消費要素抵抗値と周期的吸収放出の機能要素リアクタンス分との比率で回路要素全体の特性が評価可能となる。それが『時定数』の(4)式の表式である。ここで、『エネルギー』とは何かを物理現象として認識していることが基本的に必要である。

エネルギーと質量の関係 電気回路を解析する技術感覚から『エネルギー』の意味を捉えている。それは電気工学的分野からの狭い捉え方と言えるだろうか。ここに書く内容はとても気掛かりな意味を持つものである。それは現代科学理論として物理学理論の根幹を否定するような内容かも知れず、とても気の重いものである。出来たら書きたくないのだ。気体分子運動論も質量が世界の根幹を成しその運動エネルギーが温度のエネルギーの原因となっているとの解釈であると思う。物理学の『エネルギー』を論じる場合に、質量の無い『エネルギー』をどのように認識しているかが理解できないのである。しかし『エネルギー』概念をどのように捉えるかが長年科学技術と物理学理論の間の繋がりを考えて来た結果の主要な自分の論点でもあれば、やはり述べない訳にはゆかないので、ご勘弁の程。即ち科学技術と自然科学論の間に横たわる解決すべき問題に『エネルギー』概念があると思う。自然科学論は自然現象の根本原理を解き明かす本質的で、科学技術より高尚な学問と看做されて来たように思う。それが物理学理論と看做されていよう。科学技術と科学理論の間に横たわる未解決の命題だ。その本源は「質量」が何から構成されているかを問う問題でもある。それが素粒子論の主題となる論題でもあろう。E= m c^2^ [J] と質量m[kg] の間の根本命題である。私のつたない物理学的非専門的視点からの結論であるが。質量mが『エネルギー』から構成されているから、光速度 c [m/s] の光エネルギーに変換されるのだ。その光のエネルギーに質量が無い訳は質量の元の構成エネルギーが解放されて光のエネルギーになったからである。だから『質量』と『エネルギー』は等価で変換関係が成り立つのだ。光になった分の質量は当然姿が消える訳である。その事を『質量欠損』と言う言葉で巧く表現していると理解していたが、原子核崩壊現象の解釈を見るとどうもそうではないようにも思えて専門的解釈を理解しかねている。昭和62年に発表した『静電界は磁界を伴う』の根本命題が自然界の全ての概念は『エネルギー』に統一されると言う意味であった。電気工学技術からの『エネルギー』感覚がそう言わせて来たように思う。電気技術から電気回路の『エネルギー』がどのような意味を持っているかの、とても単純で、難しい理論も必要としない基本の問題を三角関数の計算問題として取り扱いながら考えて来ただけである。その電気回路内の『エネルギー』には決して「質量」を必要としないと言う結論の感覚がある。結局、質量を必要としない『エネルギー』を物理学理論で認識しているかの問題と考える。コイルに蓄えられる『エネルギー』とはコイルのどこに実在する『エネルギー』と解釈するか。コンデンサに蓄えられる『エネルギー』はどこに実在する『エネルギー』と解釈するか。その『エネルギー』はコイルとコンデンサのどちらに貯蔵されようと全く違いの無い同じ『エネルギー』である。その『エネルギー』の意味が理解されているかの問題であると考える。電流がエネルギーでもなければ、コイル電圧がエネルギーでもない。コイル電圧とコイル電流を掛けてもコイルに貯蔵された『エネルギー』は見えないのである。(4)式からLとCのどちらが優勢な機能を示すかはその合成値が『正』になるか『負』になるかで決まる。インピーダンス値は2乗するから区別は出来ないが、電圧に対する電流位相φの正負として現れる。それが次の時定数と力率角の三角関数の正弦波波形の位相関係になる。ここの『エネルギー』と『質量』の関係論は特別高度な理論を必要としない単なる三角関数式から考える電気回路内の『エネルギー』の話である。別の見方を示せば、コイル内に光エネルギー(電気エネルギー)が蓄えられ、コンデンサ内に同じく光エネルギー(電気エネルギー)が蓄えられると言う意味で解釈するのみでしかない。物理学理論を理解しているかと問われれば、高等学校の教科書の内容程度しか分からない、その分野の全くの素人の科学技術的感覚からの論でしかありません。

 

時定数と力率角

時定数と力率角 時定数の次元は時間の秒となる。しかし正弦波の波形上に取ると時間とは異なる不可解があった。その意味が判明したので上の図に示した。回路時定数から観る電気現象の記事を書く途中でこの記事が先になった。

(2017/07/14)追記 この記事に関連ある三角関数と回路要素の『エネルギー』について書いた。参考に電気回路要素のエネルギー(数式と意味)がある。

電力用ケーブル

投稿日: 2017年6月28日 | 投稿者: yoshihirak

自然現象の奥深くに隠されている本源は見え難い。科学技術にその自然現象が応用され、今日の地球上に人間の生活圏を拡大して来た。科学技術は応用の科学である。本源から見れば、電力系統のエネルギー供給機能で未だ多くの無駄がある。導線導体内を電子と言う『電荷』流の概念には、矛盾があるようだ。先に太陽発電設備から大量の導線が盗難に遭ったと言う話を聞いた。金属銅が資源として狙われた。電流など流れていないのだから、導線材料等中空導体で良いのだ。そこで提案の電力用ケーブル。

中空導体の電力用ケーブル 中心部は冷却材でも流しておけば良いのだ。空中配電線でも低圧絶縁ケーブルでも、電気エネルギーは導体間の空間を伝送されるのであって、その導体表面のエネルギー密度が一番高い。その絶縁材料の誘電特性等でエネルギー伝送量は考慮されるべきである。コンデンサの強誘電体特性も電力ケーブルもその原理は皆繋がった自然現象の本源に因るのだ。太陽光発電のケーブル盗難を監視する必要もない大電流用電力ケーブルが実用化されれば良いのだが。本来なら特許になる筈だろうが?