日別アーカイブ: 2019年4月3日

誘導エネルギーに観る技術と物理

はじめに
電気回路現象を理解するにはその回路内でのエネルギーの振る舞いを感覚的に捉えることが大切である。この記事もロイヤーのインバターの記事の準備として書いている。誘導電動機の運転などでは、その誘導性のエネルギー処理の問題を理解して置かなければならない。インバーターは直流電源を交流電圧波形に変換する技術であり、変圧器と誘導負荷のエネルギーの物理的意味を、電気技術概念の更に深い処の意味で捉えて置きたいと思った。基本的な方形波電圧波形と純誘導負荷のエネルギーの特質を捉えて置く必要があるからである。

単相インバーターと基本動作
最も簡単な基本回路を取り上げ、その負荷が純誘導負荷、リアクトルだけの場合についてまとめておく。物理量のエネルギーをどのように認識しているかが理科教育特に物理学において極めて重要に思える。誘導エネルギーと言う用語は一般的ではないが、コイルに蓄えられるエネルギーの技術的表現である。空心コイルでなく、鉄心に巻いたコイルのエネルギー量が大きく、その電気回路動作に強い影響を及ぼす。鉄心も含めて、コイルの中の空間に蓄えられる貯蔵エネルギーをここでは誘導エネルギーと言う。正弦波交流電圧より直流電圧の一定値を切り替えた方形波電圧波形の方が、そのエネルギーの意味を感覚的に捉え易いだろうと思う。技術的な電流や電圧の意味とエネルギーの関係について、方形波交流電圧源によって考える中身が明確になるだろう。筆者自身の経験で、初めて電気の回路動作を知ったのが方形波電圧源に関わったからである。正弦波電圧では意識しないものが観えて来るからである。

方形波電圧と誘導負荷電流 上の図のように、トランジスタとダイオードを逆向きに繋いだ一対で一つのスイッチを構成する。それを4個使って、負荷Lを電源につなげばトランジスタのオン、オフで方形波電圧が得られる。この方形波電圧で初めて、コイルの電流はどのようになるかを知ることが出来る。コイルの電圧voはLと電流ioの時間微分の積で得られることは知っていても、電流ioが電圧の時間積分となることは意識していない。コイルの電圧時間積分は磁束になる。磁束[Wb]をL[H]で割れば電流[A]になる。このような計算は科学技術理論であり、物理理論(現在の物理学は科学技術理論である)ではない。

科学技術理論と物理論あるいは自然論 科学技術論は電圧、電流などの計測量に基づいて理論を組立てたものである。当然現代物理学理論もその同じ概念に基づいて組み立てられているから自然論とは異なる。自然は人間が創り上げた自然観察手法ほど複雑な原則には無い。磁束も電荷も無い。原子構造もすべての素粒子と考えるものもたった一つの『エネルギー』の世界像である。磁束、インダクタンスおよび電流の単位間で、磁束[Wb]=インダクタンス[H]×電流[A] が何故成り立つのか?自然感覚としてその意味を捉え切れるか。せめて、磁束[(HJ)^1/2^]=インダクタンス[H]×電流[(J/H)^1/2^] なら、次元解析も容易であろう。如何に世界は『エネルギー』が根源を成しているか。エネルギーを論じない物理学は自然を論じているとは言えない。まだ、科学技術論からの要請で取り入れられた空間概念の空間容量ファラッド[F]と誘導容量ヘンリー[H]の時空論の曖昧性は残されたままのように思う。それは哲学的な思考によって解決されるべきものと思う。電流も電圧もそれらがエネルギーと関係付けて捉えられるには、それぞれ2乗によって初めて観えて来る筈だ。もう一つ触れておこう。トランジスタのnpn積層構造でも、ダイオードで表記すれば、ベース端子に対してエミッタもコレクタもダイオードの背向した構造体の筈である。コレクタ側からベースへ電流が流れないダイオードの構造の筈である。何故か不思議にもダイオードの逆向きの電流を制御していることになる。これも実際の製造現場では、単純なnpn積層構造ではない事が分かっているのだろう。考えても単純な頭では理解できない。これも何とも言えない不思議な科学技術論である。トランジスタにはエミッタに電流の方向が示されているが、量子力学論では電流ではなく、逆向きの電子の流れで論じられる。何故電子がコレクタ側に流れるかの明快な解釈は見えない。何しろダイオードの逆向きであるから。それも質量でもなく電荷でもないエネルギーの流れとして捉えなければ真の物理学にはならない筈だ。この辺に対する過去の悩み論を記した記事謎(p n結合は何故エネルギーギャップ空間か)がある。標題に技術と物理としたので少し脇道に逸れてみた。

誘導エネルギーの回生 誘導負荷エネルギーはその処理を的確にしないと、スイッチング素子が破損する。貯蔵されたエネルギーは回路から突然切り離そうとすれば、無限大のエネルギー放射源となり、回路内で炸裂する。だからと言ってそのエネルギー量が多いとは限らない。量は少なくても、そのエネルギーの流れを瞬時に止めることはできない。無理に止めようとすれば火花を放ってエネルギーを放射する。そのエネルギー感覚が電気回路解釈における筆者の感覚の基になっている。コンデンサのエネルギーにはそのような凶暴性を持った回路への危険はない。コンデンサの貯蔵エネルギーは簡単に回路から切り離せる。半導体回路のその誘導エネルギー処理の優れた機能に感心させられた。

リアクトルエネルギーの貯蔵と回生 ここでも技術論である。本来の電圧は電位が高い方がエネルギーの分布が少ないのである。負側がエネルギー源である。然し技術論では如何にも電圧の高い電位がエネルギー供給側のように解釈される。だから電流が流れて、負荷にエネルギーを供給すると理解する。本当は逆なのであるが、如何に科学技術論で頭が飼いならされたかは、電流と電圧の意識が手っ取り早い理解に結びつくかを思い知らされる。実に電圧、電流の技術概念が使いなれると便利であることか。しかしその物理的根本原理を明らかにしようとすれば、並大抵のことで解き明かせるものではない。だから電流が電線導体の中を電子が逆向きに流れる現象だなどと、実しやかなウソで誤魔化す事になる。質量の無い電子は定義されていない。電線の中を質量を移動させるにはどのような力が必要かは知っている筈だ。運動力学論で質量は電界では動かない。だから電荷と電界の関係で力を想定する。一般導線の中に電界をどのように想定できるか厳密に論理を展開出来るか考えてみれば分かろうと思う。無理なのである。それでも巷の電気解説論では堂々と電子が電線内を移動すると解説されている。しかし、だからと言って電流、電圧と言う概念を不要と言って切り捨てる訳にはいかないのだ。これ程実用的な便利な技術概念も無いから。その物理的実像を明確に捉えることは本当の自然の深い真髄を理解する上で大切な事でもある。それはトランジスタの内部あるいは近傍空間をどのようにエネルギーが流れるかを極めることに繋がる話である。技術論と自然の眞髄はどこかで明確に論理的に繋がる筈であるから。エネルギーの回生については何も述べずに来てしまった。一定周期でのスイッチングで、定常状態になった場合の負荷電流ioは三角形状に変化する。その各状態でコイル内にエネルギーが貯蔵される区間と放射(それが電源にエネルギーを回生)する区間とに分かれる。エネルギーの流れと電流値とは同じくはないが、コイルのエネルギーを電流で捉えるのが分かり易いという実に慣れという常識習慣の恐ろしさも感じながらの論理に従って理解する。本当のことは、エネルギーは電流の2乗で捉えられる筈だ。

半導体スイッチ回路をダイオードとスイッチSで書き換えてみた。二つのスイッチSを同時にx 側かy 側に投入すれば、電圧は方形波となる。スイッチの切り替えごとに打点のダイオードが電流の帰還回路を形成し、エネルギーの電源回生動作となる。なおコイルのエネルギーは電流の2乗だから放物線状に変化する。

むすび 電圧、電流と言う技術概念が如何に便利であるかは慣れるに従って益々離れがたい価値を意識する。しかし、自然にはそんな概念は無く人が創りだした技術概念でしかないのだ。実に不思議なことである。こんな事を書くことが社会的な混乱を来たす元になるようで実に気が重い事でもある。社会的組織の中では許されない論議になるかも知れないことから、孤独の世界を歩くことに成ったとも考えられる。過去の電気技術の仲間や工業高校時代の仲間とも全くの繋がりのない世界での思考の論考である。5,6年前に住所録も消えて無くなっていた。日本物理学会での発表も所属欄が書けない無様で今は止めた。学術に関する処に参画するには所属欄の記載がなければ、参画資格が無いようだ。時どき昔のことの闇の声が聞こえる。竹下内閣の『約束』が有ると。地方創生資金配分の関係かとも思うが、何の『約束』かは知らない。

今回の記事で、単相インバーター回路を取上げたが、電流が電気エネルギーの流れを示していると電気技術者ならそう理解する。しかし直流電源のエネルギー放射・伝送は実は負側のマイナス側から送られるのだ。だからトランジスタのスイッチングによるエネルギー伝送機能も負荷に印加する電圧のマイナス側がエネルギー高密度空間の基になっているのだ。大学の電気工学・電子工学の教育上の『参照基準』はその辺に照準を合わせるべきと所属の無い身ながら恥ずかしさを忍んで提言する。残念ながら教科書が間違いあるいは矛盾に気付かない内容を広めているのだ。理論がもっと実学・技術の学びの上に基づくべきだ。何々の法則が矛盾に耐えない筈だ。

政府機関なのかどうかは知らないが、裏で何か決めているようで、実に気味の悪い精神的ストレスの毎日である。正に人権侵害の連続だ。人の繋がりのない断絶した過去の上の浦島退屈論ではあるが。